Controlled Privacy Leakage Propagation Throughout Overlapping Grouped Learning

Shahrzad Kiani;Franziska Boenisch;Stark C. Draper
{"title":"Controlled Privacy Leakage Propagation Throughout Overlapping Grouped Learning","authors":"Shahrzad Kiani;Franziska Boenisch;Stark C. Draper","doi":"10.1109/JSAIT.2024.3416089","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) is the standard protocol for collaborative learning. In FL, multiple workers jointly train a shared model. They exchange model updates calculated on their data, while keeping the raw data itself local. Since workers naturally form groups based on common interests and privacy policies, we are motivated to extend standard FL to reflect a setting with multiple, potentially overlapping groups. In this setup where workers can belong and contribute to more than one group at a time, complexities arise in understanding privacy leakage and in adhering to privacy policies. To address the challenges, we propose differential private overlapping grouped learning (DP-OGL), a novel method to implement privacy guarantees within overlapping groups. Under the honest-but-curious threat model, we derive novel privacy guarantees between arbitrary pairs of workers. These privacy guarantees describe and quantify two key effects of privacy leakage in DP-OGL: propagation delay, i.e., the fact that information from one group will leak to other groups only with temporal offset through the common workers and information degradation, i.e., the fact that noise addition over model updates limits information leakage between workers. Our experiments show that applying DP-OGL enhances utility while maintaining strong privacy compared to standard FL setups.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"442-463"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10559973/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) is the standard protocol for collaborative learning. In FL, multiple workers jointly train a shared model. They exchange model updates calculated on their data, while keeping the raw data itself local. Since workers naturally form groups based on common interests and privacy policies, we are motivated to extend standard FL to reflect a setting with multiple, potentially overlapping groups. In this setup where workers can belong and contribute to more than one group at a time, complexities arise in understanding privacy leakage and in adhering to privacy policies. To address the challenges, we propose differential private overlapping grouped learning (DP-OGL), a novel method to implement privacy guarantees within overlapping groups. Under the honest-but-curious threat model, we derive novel privacy guarantees between arbitrary pairs of workers. These privacy guarantees describe and quantify two key effects of privacy leakage in DP-OGL: propagation delay, i.e., the fact that information from one group will leak to other groups only with temporal offset through the common workers and information degradation, i.e., the fact that noise addition over model updates limits information leakage between workers. Our experiments show that applying DP-OGL enhances utility while maintaining strong privacy compared to standard FL setups.
通过重叠分组学习控制隐私泄露传播
联合学习(FL)是协作学习的标准协议。在 FL 中,多个工作人员共同训练一个共享模型。他们交换根据各自数据计算的模型更新,同时保持原始数据本身的本地化。由于工作人员会根据共同的兴趣和隐私政策自然地组成小组,因此我们有动力对标准 FL 进行扩展,以反映具有多个潜在重叠小组的环境。在这种情况下,工人可以同时属于一个以上的小组并为其做出贡献,因此在理解隐私泄露和遵守隐私政策方面出现了复杂的问题。为了应对这些挑战,我们提出了差分隐私重叠分组学习(DP-OGL),这是一种在重叠组内实现隐私保证的新方法。在 "诚实但好奇 "的威胁模型下,我们得出了任意工人对之间的新型隐私保证。这些隐私保证描述并量化了 DP-OGL 中隐私泄漏的两个关键影响:传播延迟,即一个组的信息只有通过共同工作者的时间偏移才会泄漏到其他组;信息退化,即模型更新时的噪声增加限制了工作者之间的信息泄漏。我们的实验表明,与标准的 FL 设置相比,应用 DP-OGL 可以提高效用,同时保持较高的隐私性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信