Applying instance space analysis for metaheuristic selection to the 0–1 multidemand multidimensional knapsack problem

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Matthew E. Scherer, Raymond R. Hill, Brian J. Lunday, Bruce A. Cox, Edward D. White
{"title":"Applying instance space analysis for metaheuristic selection to the 0–1 multidemand multidimensional knapsack problem","authors":"Matthew E. Scherer,&nbsp;Raymond R. Hill,&nbsp;Brian J. Lunday,&nbsp;Bruce A. Cox,&nbsp;Edward D. White","doi":"10.1016/j.cor.2024.106747","DOIUrl":null,"url":null,"abstract":"<div><p>The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the optimization problem test instances employed. This paper presents a methodology for analyzing the performance of metaheuristics applied to the 0–1 multidemand multidimensional knapsack problem (MDMKP) specifically considering problem structure. This research leverages instance space analysis (ISA) to graphically depict both the multidimensional problem structure and metaheuristic performance. A new instance generation method augments the existing set of test instances; in doing so, it introduces correlation structure into the problem and helps ensure MDMKP instance feasibility. Testing compares four metaheuristics from the literature and trains an interpretable machine learning model to select a metaheuristic for a given instance based on that problem’s meta-features. The results show that the correlation structure meta-features are significant factors affecting metaheuristic performance and that a decision tree model can provide interpretable insights into the algorithm selection problem. This work demonstrates the usefulness of ISA for rigorous empirical testing to enhance understanding the performance of metaheuristics applied to the MDMKP.</p></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824002193","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the optimization problem test instances employed. This paper presents a methodology for analyzing the performance of metaheuristics applied to the 0–1 multidemand multidimensional knapsack problem (MDMKP) specifically considering problem structure. This research leverages instance space analysis (ISA) to graphically depict both the multidimensional problem structure and metaheuristic performance. A new instance generation method augments the existing set of test instances; in doing so, it introduces correlation structure into the problem and helps ensure MDMKP instance feasibility. Testing compares four metaheuristics from the literature and trains an interpretable machine learning model to select a metaheuristic for a given instance based on that problem’s meta-features. The results show that the correlation structure meta-features are significant factors affecting metaheuristic performance and that a decision tree model can provide interpretable insights into the algorithm selection problem. This work demonstrates the usefulness of ISA for rigorous empirical testing to enhance understanding the performance of metaheuristics applied to the MDMKP.

将实例空间分析应用于0-1多题多维knapsack问题的元搜索选择
在对优化应用的元启发式求解方法进行实证测试时,应考虑所采用的优化问题测试实例的基本结构的影响。本文提出了一种方法,用于分析应用于 0-1 多题多维knapsack 问题(MDMKP)的元启发式方法的性能,特别考虑到了问题结构。该研究利用实例空间分析(ISA)以图形方式描述多维问题结构和元启发式性能。一种新的实例生成方法增强了现有的测试实例集,从而将相关结构引入问题,并有助于确保 MDMKP 实例的可行性。测试比较了文献中的四种元启发式,并训练了一个可解释的机器学习模型,以根据问题的元特征为给定实例选择元启发式。结果表明,相关结构元特征是影响元启发式性能的重要因素,而决策树模型可以为算法选择问题提供可解释的见解。这项工作证明了 ISA 可用于严格的实证测试,从而加深对应用于 MDMKP 的元启发式性能的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信