{"title":"Subclassification of lung adenocarcinoma through comprehensive multi-omics data to benefit survival outcomes","authors":"","doi":"10.1016/j.compbiolchem.2024.108150","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Understanding the molecular mechanisms underlying tumor progression is of great clinical significance. This study aims to identify novel molecular markers associated with LUAD subtypes, with the goal of improving the precision of LUAD subtype classification. Additionally, optimization efforts are directed towards enhancing insights from the perspective of patient survival analysis.</p></div><div><h3>Materials and methods</h3><p>We propose an innovative feature-selection approach that focuses on LUAD classification, which is comprehensive and robust. The proposed method integrates multi-omics data from The Cancer Genome Atlas (TCGA) and leverages a synergistic combination of max-relevance and min-redundancy, least absolute shrinkage and selection operator, and Boruta algorithms. These selected features were deployed in six machine-learning classifiers: logistic regression, random forest, support vector machine, naive Bayes, k-Nearest Neighbor, and XGBoost.</p></div><div><h3>Results</h3><p>The proposed approach achieved an area under the receiver operating characteristic curve (AUC) of 0.9958 for LR. Notably, the accuracy and AUC of a composite model incorporating copy number, methylation, as well as RNA- sequencing data for expression of exons, genes, and miRNA mature strands surpassed the accuracy and AUC metrics of models with single-omics data or other multi-omics combinations. Survival analyses, revealed the SVM classifier to elicit optimal classification, outperforming that achieved by TCGA. To enhance model interpretability, SHapley Additive exPlanations (SHAP) values were utilized to elucidate the impact of each feature on the predictions. Gene Ontology (GO) enrichment analysis identified significant biological processes, molecular functions, and cellular components associated with LUAD subtypes.</p></div><div><h3>Conclusion</h3><p>In summary, our feature selection process, based on TCGA multi-omics data and combined with multiple machine learning classifiers, proficiently identifies molecular subtypes of lung adenocarcinoma and their corresponding significant genes. Our method could enhance the early detection and diagnosis of LUAD, expedite the development of targeted therapies and, ultimately, lengthen patient survival.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001385","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Understanding the molecular mechanisms underlying tumor progression is of great clinical significance. This study aims to identify novel molecular markers associated with LUAD subtypes, with the goal of improving the precision of LUAD subtype classification. Additionally, optimization efforts are directed towards enhancing insights from the perspective of patient survival analysis.
Materials and methods
We propose an innovative feature-selection approach that focuses on LUAD classification, which is comprehensive and robust. The proposed method integrates multi-omics data from The Cancer Genome Atlas (TCGA) and leverages a synergistic combination of max-relevance and min-redundancy, least absolute shrinkage and selection operator, and Boruta algorithms. These selected features were deployed in six machine-learning classifiers: logistic regression, random forest, support vector machine, naive Bayes, k-Nearest Neighbor, and XGBoost.
Results
The proposed approach achieved an area under the receiver operating characteristic curve (AUC) of 0.9958 for LR. Notably, the accuracy and AUC of a composite model incorporating copy number, methylation, as well as RNA- sequencing data for expression of exons, genes, and miRNA mature strands surpassed the accuracy and AUC metrics of models with single-omics data or other multi-omics combinations. Survival analyses, revealed the SVM classifier to elicit optimal classification, outperforming that achieved by TCGA. To enhance model interpretability, SHapley Additive exPlanations (SHAP) values were utilized to elucidate the impact of each feature on the predictions. Gene Ontology (GO) enrichment analysis identified significant biological processes, molecular functions, and cellular components associated with LUAD subtypes.
Conclusion
In summary, our feature selection process, based on TCGA multi-omics data and combined with multiple machine learning classifiers, proficiently identifies molecular subtypes of lung adenocarcinoma and their corresponding significant genes. Our method could enhance the early detection and diagnosis of LUAD, expedite the development of targeted therapies and, ultimately, lengthen patient survival.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.