Global existence and general decay for a nonlinear wave equation with acoustic and fractional boundary conditions coupling by source and delay terms

IF 1.4 Q2 MATHEMATICS, APPLIED
Abdelbaki Choucha , Salah Boulaaras , Behzad Djafari-Rouhani , Rafik Guefaifia , Asma Alharbi
{"title":"Global existence and general decay for a nonlinear wave equation with acoustic and fractional boundary conditions coupling by source and delay terms","authors":"Abdelbaki Choucha ,&nbsp;Salah Boulaaras ,&nbsp;Behzad Djafari-Rouhani ,&nbsp;Rafik Guefaifia ,&nbsp;Asma Alharbi","doi":"10.1016/j.rinam.2024.100476","DOIUrl":null,"url":null,"abstract":"<div><p>This work deal with global existence and general decay of solutions of a wave equation with acoustic and fractional boundary conditions coupling by source and delay terms. Under some hypotheses, we study the global existence of the solution and by suitable Lyapunov function the general decay result is proved.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100476"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000463/pdfft?md5=3fa82e2c38a50e43a044f945f8b298a1&pid=1-s2.0-S2590037424000463-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work deal with global existence and general decay of solutions of a wave equation with acoustic and fractional boundary conditions coupling by source and delay terms. Under some hypotheses, we study the global existence of the solution and by suitable Lyapunov function the general decay result is proved.

带有声学和分数边界条件、由源项和延迟项耦合的非线性波方程的全局存在性和一般衰减
本研究涉及声学与分数边界条件耦合的波方程解的全局存在性和一般衰减问题。在一些假设条件下,我们研究了解的全局存在性,并通过合适的 Lyapunov 函数证明了一般衰减结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信