Tan-Trieu-Giang Nguyen , Carsten Wedler , Sven Pohl , Dan Penn , Roland Span , J.P. Martin Trusler , Monika Thol
{"title":"Experimental speed-of-sound data and a fundamental equation of state for normal hydrogen optimized for flow measurements","authors":"Tan-Trieu-Giang Nguyen , Carsten Wedler , Sven Pohl , Dan Penn , Roland Span , J.P. Martin Trusler , Monika Thol","doi":"10.1016/j.jct.2024.107341","DOIUrl":null,"url":null,"abstract":"<div><p>Speed-of-sound measurements for normal hydrogen (<em>n</em>-hydrogen) in a temperature range between 273 K and 323 K were carried out using a cylindrical resonator at pressures from 1 MPa to 10 MPa and a dual-path pulse-echo system at pressures from 20 MPa to 100 MPa. The relative expanded uncertainties (<em>k</em> = 2) of the measurements range from 0.04 % to 0.08 %. Based on these measurements and data from the literature, a fundamental equation of state (EOS) was developed for the calculation of thermodynamic properties of <em>n</em>-hydrogen. It is expressed in terms of the Helmholtz energy with the independent variables temperature and density. Due to the fundamental nature of the Helmholtz energy, the equation can be used to calculate all thermodynamic properties from one mathematical expression. In contrast to typical EOS of this kind, the boundary conditions are somewhat more restricted. The relevant temperature and pressure ranges are limited to typical pipeline and storage conditions of gaseous hydrogen, including temperatures relevant for measurements with critical nozzles (140 K to 370 K with pressures up to 100 MPa). The computational speed for the implementation of the correlation in measurement sensors plays a superior role. Therefore, the equation is kept as short as possible, and exponents are of integer-kind. Most of the experimental data are still reproduced within their measurement uncertainties.</p></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021961424000946/pdfft?md5=a7441abf3047b96c56968b1060af220b&pid=1-s2.0-S0021961424000946-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424000946","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Speed-of-sound measurements for normal hydrogen (n-hydrogen) in a temperature range between 273 K and 323 K were carried out using a cylindrical resonator at pressures from 1 MPa to 10 MPa and a dual-path pulse-echo system at pressures from 20 MPa to 100 MPa. The relative expanded uncertainties (k = 2) of the measurements range from 0.04 % to 0.08 %. Based on these measurements and data from the literature, a fundamental equation of state (EOS) was developed for the calculation of thermodynamic properties of n-hydrogen. It is expressed in terms of the Helmholtz energy with the independent variables temperature and density. Due to the fundamental nature of the Helmholtz energy, the equation can be used to calculate all thermodynamic properties from one mathematical expression. In contrast to typical EOS of this kind, the boundary conditions are somewhat more restricted. The relevant temperature and pressure ranges are limited to typical pipeline and storage conditions of gaseous hydrogen, including temperatures relevant for measurements with critical nozzles (140 K to 370 K with pressures up to 100 MPa). The computational speed for the implementation of the correlation in measurement sensors plays a superior role. Therefore, the equation is kept as short as possible, and exponents are of integer-kind. Most of the experimental data are still reproduced within their measurement uncertainties.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.