An assessment of nature-inspired metaheuristic algorithms for resilient controller placement in software-defined networks

Sagarika Mohanty, Bibhudatta Sahoo, Subham Sai Behera
{"title":"An assessment of nature-inspired metaheuristic algorithms for resilient controller placement in software-defined networks","authors":"Sagarika Mohanty,&nbsp;Bibhudatta Sahoo,&nbsp;Subham Sai Behera","doi":"10.1016/j.dajour.2024.100501","DOIUrl":null,"url":null,"abstract":"<div><p>Software-defined Networking (SDN) offers flexibility and programmability, making it a desirable option for modern network architecture. SDN provides numerous benefits to network administrators due to its centralized control architecture. This allows network administrators to manage and configure the network from a single location, making it easier to manage and automate network tasks. In a network of multiple controllers, the control plane’s resiliency may impact the overall system’s performance. In a controller failure scenario, switches must be reassigned to other active controllers with adequate capacity. Thus, we define a resilient controller placement (RCP) as an optimization problem. The aim is to design physically distributed and redundant controllers to manage switches with varying resilience levels. The propagation latency may increase due to the reassignment, increasing the network cost. The objective is to determine the number of controllers required, their positions, and the allocation of the network nodes to a particular controller while reducing the average propagation latency and cost in meeting the capacity constraint of the controller. Due to the wide area network (WAN) structure, four nature-inspired metaheuristic algorithms are proposed namely, simulated annealing (RCP-SA), moth-flame optimization algorithm (RCP-MFO), particle swarm optimization (RCP-PSO), and grey wolf optimization algorithm (RCP-GWO). These algorithms are evaluated on three network datasets to determine the optimum controller number and their positions. The experimental results show that RCP-GWO performs better than RCP-SA, RCP-MFO, RCP-PSO, and the Random methods.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"12 ","pages":"Article 100501"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277266222400105X/pdfft?md5=789051d6bc046617e9a2e7dbc59bb92a&pid=1-s2.0-S277266222400105X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277266222400105X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Software-defined Networking (SDN) offers flexibility and programmability, making it a desirable option for modern network architecture. SDN provides numerous benefits to network administrators due to its centralized control architecture. This allows network administrators to manage and configure the network from a single location, making it easier to manage and automate network tasks. In a network of multiple controllers, the control plane’s resiliency may impact the overall system’s performance. In a controller failure scenario, switches must be reassigned to other active controllers with adequate capacity. Thus, we define a resilient controller placement (RCP) as an optimization problem. The aim is to design physically distributed and redundant controllers to manage switches with varying resilience levels. The propagation latency may increase due to the reassignment, increasing the network cost. The objective is to determine the number of controllers required, their positions, and the allocation of the network nodes to a particular controller while reducing the average propagation latency and cost in meeting the capacity constraint of the controller. Due to the wide area network (WAN) structure, four nature-inspired metaheuristic algorithms are proposed namely, simulated annealing (RCP-SA), moth-flame optimization algorithm (RCP-MFO), particle swarm optimization (RCP-PSO), and grey wolf optimization algorithm (RCP-GWO). These algorithms are evaluated on three network datasets to determine the optimum controller number and their positions. The experimental results show that RCP-GWO performs better than RCP-SA, RCP-MFO, RCP-PSO, and the Random methods.

评估软件定义网络中弹性控制器安置的自然启发元搜索算法
软件定义网络(SDN)具有灵活性和可编程性,是现代网络架构的理想选择。由于采用集中控制架构,SDN 可为网络管理员带来诸多好处。这使网络管理员能够从单一位置管理和配置网络,从而更容易管理和自动化网络任务。在由多个控制器组成的网络中,控制平面的弹性可能会影响整个系统的性能。在控制器失效的情况下,交换机必须重新分配给其他有足够容量的活动控制器。因此,我们将弹性控制器放置(RCP)定义为一个优化问题。其目的是设计物理分布式冗余控制器,以管理不同弹性级别的交换机。由于重新分配,传播延迟可能会增加,从而增加网络成本。我们的目标是确定所需的控制器数量、位置以及将网络节点分配给特定控制器的方式,同时降低平均传播延迟和成本,以满足控制器的容量限制。针对广域网(WAN)结构,提出了四种受自然启发的元启发算法,即模拟退火算法(RCP-SA)、蛾焰优化算法(RCP-MFO)、粒子群优化算法(RCP-PSO)和灰狼优化算法(RCP-GWO)。这些算法在三个网络数据集上进行了评估,以确定最佳控制器数量及其位置。实验结果表明,RCP-GWO 的性能优于 RCP-SA、RCP-MFO、RCP-PSO 和随机方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信