Optimal linear ensemble of binary classifiers.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-06-25 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae093
Mehmet Eren Ahsen, Robert Vogel, Gustavo Stolovitzky
{"title":"Optimal linear ensemble of binary classifiers.","authors":"Mehmet Eren Ahsen, Robert Vogel, Gustavo Stolovitzky","doi":"10.1093/bioadv/vbae093","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The integration of vast, complex biological data with computational models offers profound insights and predictive accuracy. Yet, such models face challenges: poor generalization and limited labeled data.</p><p><strong>Results: </strong>To overcome these difficulties in binary classification tasks, we developed the Method for Optimal Classification by Aggregation (MOCA) algorithm, which addresses the problem of generalization by virtue of being an ensemble learning method and can be used in problems with limited or no labeled data. We developed both an unsupervised (uMOCA) and a supervised (sMOCA) variant of MOCA. For uMOCA, we show how to infer the MOCA weights in an unsupervised way, which are optimal under the assumption of class-conditioned independent classifier predictions. When it is possible to use labels, sMOCA uses empirically computed MOCA weights. We demonstrate the performance of uMOCA and sMOCA using simulated data as well as actual data previously used in Dialogue on Reverse Engineering and Methods (DREAM) challenges. We also propose an application of sMOCA for transfer learning where we use pre-trained computational models from a domain where labeled data are abundant and apply them to a different domain with less abundant labeled data.</p><p><strong>Availability and implementation: </strong>GitHub repository, https://github.com/robert-vogel/moca.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The integration of vast, complex biological data with computational models offers profound insights and predictive accuracy. Yet, such models face challenges: poor generalization and limited labeled data.

Results: To overcome these difficulties in binary classification tasks, we developed the Method for Optimal Classification by Aggregation (MOCA) algorithm, which addresses the problem of generalization by virtue of being an ensemble learning method and can be used in problems with limited or no labeled data. We developed both an unsupervised (uMOCA) and a supervised (sMOCA) variant of MOCA. For uMOCA, we show how to infer the MOCA weights in an unsupervised way, which are optimal under the assumption of class-conditioned independent classifier predictions. When it is possible to use labels, sMOCA uses empirically computed MOCA weights. We demonstrate the performance of uMOCA and sMOCA using simulated data as well as actual data previously used in Dialogue on Reverse Engineering and Methods (DREAM) challenges. We also propose an application of sMOCA for transfer learning where we use pre-trained computational models from a domain where labeled data are abundant and apply them to a different domain with less abundant labeled data.

Availability and implementation: GitHub repository, https://github.com/robert-vogel/moca.

二元分类器的最优线性组合。
动机将庞大、复杂的生物数据与计算模型相结合,可提供深刻的洞察力和预测准确性。然而,这些模型面临着挑战:泛化能力差和标记数据有限:为了克服二元分类任务中的这些困难,我们开发了聚合最优分类方法(MOCA)算法,该算法是一种集合学习方法,可用于标注数据有限或无标注数据的问题,从而解决泛化问题。我们开发了 MOCA 的无监督(uMOCA)和有监督(sMOCA)变体。对于 uMOCA,我们展示了如何在无监督的情况下推断 MOCA 权重,在类条件独立分类器预测的假设下,MOCA 权重是最优的。当可以使用标签时,sMOCA 会使用根据经验计算出的 MOCA 权重。我们使用模拟数据和以前在 "逆向工程与方法对话"(DREAM)挑战赛中使用的实际数据演示了 uMOCA 和 sMOCA 的性能。我们还提出了 sMOCA 在迁移学习中的应用,即使用来自标注数据丰富的领域的预训练计算模型,并将其应用于标注数据较少的不同领域:GitHub 存储库,https://github.com/robert-vogel/moca。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信