Bayesian Hierarchical Models for Subgroup Analysis.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Pharmaceutical Statistics Pub Date : 2024-11-01 Epub Date: 2024-07-15 DOI:10.1002/pst.2424
Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann
{"title":"Bayesian Hierarchical Models for Subgroup Analysis.","authors":"Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann","doi":"10.1002/pst.2424","DOIUrl":null,"url":null,"abstract":"<p><p>In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1065-1083"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2424","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.

用于分组分析的贝叶斯层次模型。
在传统的亚组分析中,亚组治疗效果是使用每个亚组的数据单独估算的,而不考虑同一研究中其他亚组的数据。由于某些亚组的样本量较小,这种方法估算出的亚组治疗效果可能是异质性的,变异性较大,与总体人群的治疗效果相差甚远。贝叶斯分层模型(BHM)可用于得出更精确、异质性更小的亚组治疗效果估计值,这些估计值更接近总体人群的治疗效果。BHM 假定在调整效应修饰因子和其他相关协变量后,各亚组的治疗效果具有可交换性。在本文中,我们将讨论使用汇总级统计数据和患者级数据进行单向和多向 BHM 应用于亚组分析的技术细节。我们将通过四个基于新药申请的案例研究来说明这些模型在连续终点、二分终点、时间到事件终点和计数终点亚组分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信