Glucagon Receptor Antagonist for Heart Failure With Preserved Ejection Fraction.

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Circulation research Pub Date : 2024-08-16 Epub Date: 2024-07-16 DOI:10.1161/CIRCRESAHA.124.324706
Chen Gao, Zhaojun Xiong, Yunxia Liu, Meng Wang, Menglong Wang, Tian Liu, Jianfang Liu, Shuxun Ren, Nancy Cao, Hai Yan, Daniel J Drucker, Christoph Daniel Rau, Tomohiro Yokota, Jijun Huang, Yibin Wang
{"title":"Glucagon Receptor Antagonist for Heart Failure With Preserved Ejection Fraction.","authors":"Chen Gao, Zhaojun Xiong, Yunxia Liu, Meng Wang, Menglong Wang, Tian Liu, Jianfang Liu, Shuxun Ren, Nancy Cao, Hai Yan, Daniel J Drucker, Christoph Daniel Rau, Tomohiro Yokota, Jijun Huang, Yibin Wang","doi":"10.1161/CIRCRESAHA.124.324706","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized.</p><p><strong>Method: </strong>We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lep<sup>ob</sup>/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts.</p><p><strong>Results: </strong>In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress.</p><p><strong>Conclusions: </strong>These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"614-628"},"PeriodicalIF":16.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.324706","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized.

Method: We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts.

Results: In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress.

Conclusions: These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.

胰高血糖素受体拮抗剂治疗射血分数保留型心力衰竭
背景:射血分数保留型心力衰竭(HFpEF)是一项新出现的尚未满足的重大需求,也是心脏病学临床面临的最重大挑战之一。HFpEF 的发病机制与多种危险因素有关。高血压和与肥胖相关的代谢紊乱是 HFpEF 患者最常见的两种合并症。虽然高血压引起的机械负荷过重早已被认为是导致射血分数降低的心力衰竭的一个重要因素,但机械负荷过重和代谢紊乱在 HFpEF 发病机制中的协同作用仍鲜为人知:方法:我们通过对瘦C57Bl/6J或肥胖/糖尿病B6.Cg-Lepob/J(ob/ob)小鼠进行横向主动脉缩窄,研究了心脏同时承受机械和代谢压力所产生的功能结果及其潜在机制,随后进行了单核RNA-seq分析,并对两个实验队列中受到不同影响的顶级信号通路进行了靶向操作:结果:与经主动脉缩窄后的 C57Bl/6J 瘦小鼠相比,经主动脉缩窄后的 ob/ob 小鼠随着时间的推移出现了射血分数降低的心力衰竭病理特征,射血分数没有明显变化,但却出现了 HFpEF 的特征性病理特征,包括舒张功能障碍、心脏肥大恶化和病理重塑,以及运动不耐受性进一步恶化。单核RNA-seq分析显示,同时受到压力过载和肥胖/糖尿病压力的心肌细胞发生了显著的转录组重排,这与单独受到压力过载或肥胖/糖尿病压力的心肌细胞明显不同。此外,胰高血糖素信号被确定为与高频心衰相关的心肌细胞中受影响最大的信号通路。在两个独立的临床前模型中,用胰高血糖素受体拮抗剂治疗可明显改善高频心衰相关病理特征的发展。重要的是,心肌细胞特异性胰高血糖素受体基因缺失也能显著改善心脏功能对压力过载和代谢压力的反应:这些发现确定了心肌细胞中的胰高血糖素受体信号转导是高频心衰进展的关键决定因素,并为胰高血糖素受体拮抗剂作为该疾病的一种潜在疗法提供了概念验证支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信