Nora Josefine Paulke, Carolin Fleischhacker, Justus B Wegener, Gabriel C Riedemann, Constantin Cretu, Mufassra Mushtaq, Nina Zaremba, Wiebke Möbius, Yannik Zühlke, Jasper Wedemeyer, Lorenz Liebmann, Anastasiia A Gorshkova, Daniel Kownatzki-Danger, Eva Wagner, Tobias Kohl, Carolin Wichmann, Olaf Jahn, Henning Urlaub, Karl Toischer, Gerd Hasenfuß, Tobias Moser, Julia Preobraschenski, Christof Lenz, Eva A Rog-Zielinska, Stephan E Lehnart, Sören Brandenburg
{"title":"Dysferlin Enables Tubular Membrane Proliferation in Cardiac Hypertrophy.","authors":"Nora Josefine Paulke, Carolin Fleischhacker, Justus B Wegener, Gabriel C Riedemann, Constantin Cretu, Mufassra Mushtaq, Nina Zaremba, Wiebke Möbius, Yannik Zühlke, Jasper Wedemeyer, Lorenz Liebmann, Anastasiia A Gorshkova, Daniel Kownatzki-Danger, Eva Wagner, Tobias Kohl, Carolin Wichmann, Olaf Jahn, Henning Urlaub, Karl Toischer, Gerd Hasenfuß, Tobias Moser, Julia Preobraschenski, Christof Lenz, Eva A Rog-Zielinska, Stephan E Lehnart, Sören Brandenburg","doi":"10.1161/CIRCRESAHA.124.324588","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy.</p><p><strong>Methods: </strong>Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging.</p><p><strong>Results: </strong>We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca<sup>2+</sup> channels and ryanodine receptor Ca<sup>2+</sup> release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components.</p><p><strong>Conclusions: </strong>Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"554-574"},"PeriodicalIF":16.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.324588","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy.
Methods: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging.
Results: We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components.
Conclusions: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.