Improved Efficiency and Sensitivity Analysis of 3-D Agent-based Model for Pain-related Neural Activity in the Amygdala.

Spora : a journal of biomathematics Pub Date : 2024-01-01 Epub Date: 2024-07-01 DOI:10.61403/2473-5493.1094
Kayla Kraeuter, Carley Reith, Benedict J Kolber, Rachael Miller Neilan
{"title":"Improved Efficiency and Sensitivity Analysis of 3-D Agent-based Model for Pain-related Neural Activity in the Amygdala.","authors":"Kayla Kraeuter, Carley Reith, Benedict J Kolber, Rachael Miller Neilan","doi":"10.61403/2473-5493.1094","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain is caused by nerve injury and involves brain areas such as the central nucleus of the amygdala (CeA). We developed the first 3-D agent-based model (ABM) of neuropathic pain-related neurons in the CeA using NetLogo3D. The execution time of a single ABM simulation using realistic parameters (e.g., 13,000 neurons and 22,000+ neural connections) is an important factor in the model's usability. In this paper, we describe our efforts to improve the computational efficiency of our 3-D ABM, which resulted in a 28% reduction in execution time on average for a typical simulation. With this upgraded model, we performed one- and two-parameter sensitivity analyses to study the sensitivity of model output to variability in several key parameters along the anterior to posterior axis of the CeA. These results highlight the importance of computational modeling in exploring spatial and cell-type specific properties of brain regions to inform future wet lab experiments.</p>","PeriodicalId":92725,"journal":{"name":"Spora : a journal of biomathematics","volume":"10 1","pages":"65-82"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spora : a journal of biomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61403/2473-5493.1094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuropathic pain is caused by nerve injury and involves brain areas such as the central nucleus of the amygdala (CeA). We developed the first 3-D agent-based model (ABM) of neuropathic pain-related neurons in the CeA using NetLogo3D. The execution time of a single ABM simulation using realistic parameters (e.g., 13,000 neurons and 22,000+ neural connections) is an important factor in the model's usability. In this paper, we describe our efforts to improve the computational efficiency of our 3-D ABM, which resulted in a 28% reduction in execution time on average for a typical simulation. With this upgraded model, we performed one- and two-parameter sensitivity analyses to study the sensitivity of model output to variability in several key parameters along the anterior to posterior axis of the CeA. These results highlight the importance of computational modeling in exploring spatial and cell-type specific properties of brain regions to inform future wet lab experiments.

基于三维代理的杏仁核疼痛相关神经活动模型的效率和灵敏度分析的改进
神经性疼痛由神经损伤引起,涉及杏仁核中央核(CeA)等脑区。我们利用 NetLogo3D 开发了首个 CeA 中神经性疼痛相关神经元的三维代理模型(ABM)。使用现实参数(如 13,000 个神经元和 22,000+ 个神经连接)进行单次 ABM 仿真的执行时间是影响模型可用性的一个重要因素。在本文中,我们介绍了我们为提高 3-D ABM 计算效率所做的努力,这些努力使典型模拟的平均执行时间缩短了 28%。利用升级后的模型,我们进行了单参数和双参数敏感性分析,研究了模型输出对 CeA 前后轴线上几个关键参数变化的敏感性。这些结果凸显了计算建模在探索脑区空间和细胞类型特定属性方面的重要性,为未来的湿实验室实验提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信