{"title":"Generating synthetic signaling networks for in silico modeling studies","authors":"Jin Xu , H. Steven Wiley , Herbert M. Sauro","doi":"10.1016/j.jtbi.2024.111901","DOIUrl":null,"url":null,"abstract":"<div><p>Predictive models of signaling pathways have proven to be difficult to develop. Traditional approaches to developing mechanistic models rely on collecting experimental data and fitting a single model to that data. This approach works for simple systems but has proven unreliable for complex systems such as biological signaling networks. Thus, there is a need to develop new approaches to create predictive mechanistic models of complex systems. To meet this need, we developed a method for generating artificial signaling networks that were reasonably realistic and thus could be treated as ground truth models. These synthetic models could then be used to generate synthetic data for developing and testing algorithms designed to recover the underlying network topology and associated parameters. We defined the reaction degree and reaction distance to measure the topology of reaction networks, especially to consider enzymes. To determine whether our generated signaling networks displayed meaningful behavior, we compared them with signaling networks from the BioModels Database. This comparison indicated that our generated signaling networks had high topological similarities with BioModels signaling networks with respect to the reaction degree and distance distributions. In addition, our synthetic signaling networks had similar behavioral dynamics with respect to both steady states and oscillations, suggesting that our method generated synthetic signaling networks comparable with BioModels and thus could be useful for building network evaluation tools.</p></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"593 ","pages":"Article 111901"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001851","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Predictive models of signaling pathways have proven to be difficult to develop. Traditional approaches to developing mechanistic models rely on collecting experimental data and fitting a single model to that data. This approach works for simple systems but has proven unreliable for complex systems such as biological signaling networks. Thus, there is a need to develop new approaches to create predictive mechanistic models of complex systems. To meet this need, we developed a method for generating artificial signaling networks that were reasonably realistic and thus could be treated as ground truth models. These synthetic models could then be used to generate synthetic data for developing and testing algorithms designed to recover the underlying network topology and associated parameters. We defined the reaction degree and reaction distance to measure the topology of reaction networks, especially to consider enzymes. To determine whether our generated signaling networks displayed meaningful behavior, we compared them with signaling networks from the BioModels Database. This comparison indicated that our generated signaling networks had high topological similarities with BioModels signaling networks with respect to the reaction degree and distance distributions. In addition, our synthetic signaling networks had similar behavioral dynamics with respect to both steady states and oscillations, suggesting that our method generated synthetic signaling networks comparable with BioModels and thus could be useful for building network evaluation tools.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.