Hard interfaces with microstructure: the cases of strain gradient elasticity and micropolar elasticity.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Michele Serpilli, Raffaella Rizzoni, Frédéric Lebon
{"title":"Hard interfaces with microstructure: the cases of strain gradient elasticity and micropolar elasticity.","authors":"Michele Serpilli, Raffaella Rizzoni, Frédéric Lebon","doi":"10.1098/rsta.2023.0308","DOIUrl":null,"url":null,"abstract":"<p><p>As the size of a layered structure scales down, the adhesive layer thickness correspondingly decreases from macro- to micro-scale. The influence of the material microstructure of the adhesive becomes more pronounced, and possible size effect phenomena can appear. This paper describes the mechanical behaviour of composites made of two solids, bonded together by a thin layer, in the framework of strain gradient and micropolar elasticity. The adhesive layer is assumed to have the same stiffness properties as the adherents. By means of the asymptotic methods, the contact laws are derived at order 0 and order 1. These conditions represent a formal generalization of the hard elastic interface conditions. A simple benchmark equilibrium problem (a three-layer composite micro-bar subjected to an axial load) is developed to numerically assess the asymptotic model. Size effects and non-local phenomena, owing to high strain concentrations at the edges, are highlighted. The example proves the efficiency of the proposed approach in designing micro-scale-layered devices.This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0308","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As the size of a layered structure scales down, the adhesive layer thickness correspondingly decreases from macro- to micro-scale. The influence of the material microstructure of the adhesive becomes more pronounced, and possible size effect phenomena can appear. This paper describes the mechanical behaviour of composites made of two solids, bonded together by a thin layer, in the framework of strain gradient and micropolar elasticity. The adhesive layer is assumed to have the same stiffness properties as the adherents. By means of the asymptotic methods, the contact laws are derived at order 0 and order 1. These conditions represent a formal generalization of the hard elastic interface conditions. A simple benchmark equilibrium problem (a three-layer composite micro-bar subjected to an axial load) is developed to numerically assess the asymptotic model. Size effects and non-local phenomena, owing to high strain concentrations at the edges, are highlighted. The example proves the efficiency of the proposed approach in designing micro-scale-layered devices.This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.

具有微结构的硬界面:应变梯度弹性和微弹性的情况。
随着分层结构尺寸的缩小,粘合剂层厚度也相应地从宏观尺度减小到微观尺度。粘合剂材料微观结构的影响变得更加明显,可能出现尺寸效应现象。本文在应变梯度和微极性弹性的框架下,描述了由两个固体通过薄层粘合而成的复合材料的机械性能。假设粘合层具有与被粘物相同的刚度特性。通过渐近方法,得出了阶 0 和阶 1 的接触定律。这些条件代表了硬弹性界面条件的形式概括。为了对渐近模型进行数值评估,我们开发了一个简单的基准平衡问题(承受轴向载荷的三层复合微棒)。由于边缘的高应变集中,尺寸效应和非局部现象得到了强调。这个例子证明了所提出的方法在设计微尺度层状装置中的效率。本文是 "非光滑变分问题在力学中的应用 "专题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信