Consequences of Pore Polarity and Solvent Structure on Epoxide Ring-Opening in Lewis and Brønsted Acid Zeolites

JACS Au Pub Date : 2024-07-09 DOI:10.1021/jacsau.4c00398
David S. Potts, Jessica K. Komar, Matthew A. Jacobson, Huston Locht, David W. Flaherty
{"title":"Consequences of Pore Polarity and Solvent Structure on Epoxide Ring-Opening in Lewis and Brønsted Acid Zeolites","authors":"David S. Potts, Jessica K. Komar, Matthew A. Jacobson, Huston Locht, David W. Flaherty","doi":"10.1021/jacsau.4c00398","DOIUrl":null,"url":null,"abstract":"The structure of solvent molecules within zeolite pores influences the rates and selectivities of catalytic reactions by altering the free energies of reactive species. Here, we examine the consequences of these effects on the kinetics and thermodynamics of 1,2-epoxybutane (C<sub>4</sub>H<sub>8</sub>O) ring-opening with methanol (CH<sub>3</sub>OH) in acetonitrile (CH<sub>3</sub>CN) cosolvent over Lewis acidic (Zr-BEA) and Brønsted acidic (Al-BEA) zeolites of varying (SiOH)<sub><i>x</i></sub> density. Despite ostensibly identical reaction mechanisms across materials, turnover rates depend differently on (SiOH)<sub><i>x</i></sub> density between acid types. (SiOH)<sub><i>x</i></sub>-rich Zr-BEA (Zr-BEA-OH) provides ∼10 times greater rates than a (SiOH)<sub><i>x</i></sub>-poor material (Zr-BEA-F), while Al-BEA-OH and Al-BEA-F give turnover rates within a factor of 2. Zr-BEA-OH shows more positive activation enthalpies and entropies than Zr-BEA-F across the range of [CH<sub>3</sub>OH], which reflect the displacement of solvent molecules and lead to greater rates in Zr-BEA-OH due to the dominant role of entropic gains. Measurements of the density and composition of solvent within the pores show that the (SiOH)<sub><i>x</i></sub> nests within Zr-BEA-OH promote hydrogen-bonded solvent structures distinct from Zr-BEA-F, while the Brønsted acid sites confer interactions similar to (SiOH)<sub><i>x</i></sub> nests and give solvent structures within Al-BEA-F that resemble those within Al-BEA-OH. Correlations between apparent activation enthalpies and C<sub>4</sub>H<sub>8</sub>O adsorption enthalpies show that interactions with solvent molecules give proportional changes to both C<sub>4</sub>H<sub>8</sub>O adsorption and ring-opening transition state formation. The differences in intrapore environment carry consequences for both rates and regioselectivities of epoxide ring-opening, as demonstrated by product regioselectivities that increase by a factor of 3 in response to changes in solvent composition and the type of acid site in the *BEA structure (i.e., Lewis or Brønsted). These results demonstrate the ability to control rates, regioselectivities, and adsorption thermodynamics relevant for industrially relevant liquid-phase reactions through the design of noncovalent interactions among solvating molecules, reactive species, and (SiOH)<sub><i>x</i></sub> functions.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The structure of solvent molecules within zeolite pores influences the rates and selectivities of catalytic reactions by altering the free energies of reactive species. Here, we examine the consequences of these effects on the kinetics and thermodynamics of 1,2-epoxybutane (C4H8O) ring-opening with methanol (CH3OH) in acetonitrile (CH3CN) cosolvent over Lewis acidic (Zr-BEA) and Brønsted acidic (Al-BEA) zeolites of varying (SiOH)x density. Despite ostensibly identical reaction mechanisms across materials, turnover rates depend differently on (SiOH)x density between acid types. (SiOH)x-rich Zr-BEA (Zr-BEA-OH) provides ∼10 times greater rates than a (SiOH)x-poor material (Zr-BEA-F), while Al-BEA-OH and Al-BEA-F give turnover rates within a factor of 2. Zr-BEA-OH shows more positive activation enthalpies and entropies than Zr-BEA-F across the range of [CH3OH], which reflect the displacement of solvent molecules and lead to greater rates in Zr-BEA-OH due to the dominant role of entropic gains. Measurements of the density and composition of solvent within the pores show that the (SiOH)x nests within Zr-BEA-OH promote hydrogen-bonded solvent structures distinct from Zr-BEA-F, while the Brønsted acid sites confer interactions similar to (SiOH)x nests and give solvent structures within Al-BEA-F that resemble those within Al-BEA-OH. Correlations between apparent activation enthalpies and C4H8O adsorption enthalpies show that interactions with solvent molecules give proportional changes to both C4H8O adsorption and ring-opening transition state formation. The differences in intrapore environment carry consequences for both rates and regioselectivities of epoxide ring-opening, as demonstrated by product regioselectivities that increase by a factor of 3 in response to changes in solvent composition and the type of acid site in the *BEA structure (i.e., Lewis or Brønsted). These results demonstrate the ability to control rates, regioselectivities, and adsorption thermodynamics relevant for industrially relevant liquid-phase reactions through the design of noncovalent interactions among solvating molecules, reactive species, and (SiOH)x functions.
孔极性和溶剂结构对路易斯和布氏酸性沸石中环氧化物开环的影响
沸石孔内溶剂分子的结构会改变反应物的自由能,从而影响催化反应的速率和选择性。在这里,我们研究了这些效应对不同 (SiOH)x 密度的路易斯酸(Zr-BEA)和布伦特酸(Al-BEA)沸石上 1,2-epoxybutane (C4H8O) 与甲醇(CH3OH)在乙腈(CH3CN)共溶剂中开环反应的动力学和热力学的影响。尽管不同材料的反应机理表面上完全相同,但不同酸性材料的转化率随(SiOH)x 密度的变化而不同。(富含(SiOH)x的Zr-BEA(Zr-BEA-OH)比贫含(SiOH)x的材料(Zr-BEA-F)的转化率高出10倍,而Al-BEA-OH和Al-BEA-F的转化率则在2倍以内。在[CH3OH]的范围内,Zr-BEA-OH 比 Zr-BEA-F 显示出更多的正活化焓和熵,这反映了溶剂分子的置换,由于熵增的主导作用,Zr-BEA-OH 的转化率更高。对孔隙内溶剂密度和组成的测量表明,Zr-BEA-OH 中的(SiOH)x 嵌套促进了与 Zr-BEA-F 不同的氢键溶剂结构,而布氏酸位点则赋予了与(SiOH)x 嵌套类似的相互作用,并使 Al-BEA-F 中的溶剂结构与 Al-BEA-OH 中的溶剂结构相似。表观活化焓与 C4H8O 吸附焓之间的相关性表明,与溶剂分子的相互作用会使 C4H8O 吸附和开环过渡态的形成发生比例变化。孔内环境的差异对环氧化物开环的速率和区域选择性都有影响,这体现在产物的区域选择性会随着溶剂成分和*BEA 结构中酸位点类型(即路易斯酸或布氏酸)的变化而增加 3 倍。这些结果表明,通过设计溶解分子、反应物和 (SiOH)x 功能之间的非共价相互作用,能够控制与工业相关的液相反应的速率、区域选择性和吸附热力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信