Topological Hecke eigenforms

IF 1 3区 数学 Q1 MATHEMATICS
L. Candelori, A. Salch
{"title":"Topological Hecke eigenforms","authors":"L. Candelori, A. Salch","doi":"10.1007/s00209-024-03552-2","DOIUrl":null,"url":null,"abstract":"<p>We study the eigenforms of the action of A. Baker’s Hecke operators on the holomorphic elliptic homology of various topological spaces. We prove a multiplicity one theorem (i.e., one-dimensionality of the space of these “topological Hecke eigenforms” for any given eigencharacter) for some classes of topological spaces, and we give examples of finite CW-complexes for which multiplicity one fails. We also develop some abstract “derived eigentheory” whose motivating examples arise from the failure of classical Hecke operators to commute with multiplication by various Eisenstein series, or non-cuspidal holomorphic modular forms in general. Part of this “derived eigentheory” is an identification of certain derived Hecke eigenforms as the obstructions to extending topological Hecke eigenforms from the top cell of a CW-complex to the rest of the CW-complex. Using these obstruction classes together with our multiplicity one theorem, we calculate the topological Hecke eigenforms explicitly, in terms of pairs of classical modular forms, on all 2-cell CW complexes obtained by coning off an element in <span>\\(\\pi _n(S^m)\\)</span> which stably has Adams–Novikov filtration 1.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03552-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the eigenforms of the action of A. Baker’s Hecke operators on the holomorphic elliptic homology of various topological spaces. We prove a multiplicity one theorem (i.e., one-dimensionality of the space of these “topological Hecke eigenforms” for any given eigencharacter) for some classes of topological spaces, and we give examples of finite CW-complexes for which multiplicity one fails. We also develop some abstract “derived eigentheory” whose motivating examples arise from the failure of classical Hecke operators to commute with multiplication by various Eisenstein series, or non-cuspidal holomorphic modular forms in general. Part of this “derived eigentheory” is an identification of certain derived Hecke eigenforms as the obstructions to extending topological Hecke eigenforms from the top cell of a CW-complex to the rest of the CW-complex. Using these obstruction classes together with our multiplicity one theorem, we calculate the topological Hecke eigenforms explicitly, in terms of pairs of classical modular forms, on all 2-cell CW complexes obtained by coning off an element in \(\pi _n(S^m)\) which stably has Adams–Novikov filtration 1.

Abstract Image

拓扑对冲特征形式
我们研究 A. 贝克的赫克算子对各种拓扑空间的全形椭圆同调作用的特征形式。我们证明了一些拓扑空间类别的多重性一定理(即对于任何给定的特征特性,这些 "拓扑赫克特征形式 "空间的一维性),并举例说明了多重性一失效的有限 CW 复数。我们还发展了一些抽象的 "派生特征理论",其激励性的例子来自经典的赫克算子与各种爱森斯坦级数的乘法或一般非簇状全形模态的失效。这种 "派生特征理论 "的一部分是确定某些派生的赫克特征形式是将拓扑赫克特征形式从 CW 复数的顶格扩展到 CW 复数其余部分的障碍。利用这些阻碍类和我们的多重性一定理,我们以经典模形式对为单位,明确地计算了通过锥去\(\pi _n(S^m)\)中稳定地具有亚当斯-诺维科夫滤过1的元素而得到的所有2室CW复合物上的拓扑赫克特征形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信