Stability of a Delayed Predator-Prey Model for Puma Concolor

Wilson Mejías, Daniel Sepúlveda
{"title":"Stability of a Delayed Predator-Prey Model for Puma Concolor","authors":"Wilson Mejías, Daniel Sepúlveda","doi":"arxiv-2407.07904","DOIUrl":null,"url":null,"abstract":"This study presents a mathematical model that describes the relationship\nbetween the Puma concolor and its prey using delay differential equations, a\nHolling type III functional response, logistic growth for the prey, and a\nRicker-type function to model intraspecific competition of the pumas. For\npositive equilibrium, conditions guaranteeing absolute stability are\nestablished, based on the delay value and model parameters. The analysis\ndemonstrates the existence of a unique maximal solution for the proposed model,\nwhich remains non-negative for nonnegative initial conditions and is\nwell-defined for all $t$ greater than zero. Furthermore, numerical simulations\nwith different parameter values were performed to investigate the effects of\nsystematically removing a percentage of predators or prey. Numerical\nsimulations attempt to exemplify and put into practice the theorems proved in\nthis article.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a mathematical model that describes the relationship between the Puma concolor and its prey using delay differential equations, a Holling type III functional response, logistic growth for the prey, and a Ricker-type function to model intraspecific competition of the pumas. For positive equilibrium, conditions guaranteeing absolute stability are established, based on the delay value and model parameters. The analysis demonstrates the existence of a unique maximal solution for the proposed model, which remains non-negative for nonnegative initial conditions and is well-defined for all $t$ greater than zero. Furthermore, numerical simulations with different parameter values were performed to investigate the effects of systematically removing a percentage of predators or prey. Numerical simulations attempt to exemplify and put into practice the theorems proved in this article.
美洲狮延迟捕食者-猎物模型的稳定性
本研究提出了一个数学模型,利用延迟微分方程、霍林 III 型功能响应、猎物的对数增长和里克式函数来描述美洲狮与猎物之间的关系,从而模拟美洲狮的种内竞争。根据延迟值和模型参数,建立了保证绝对稳定的正平衡条件。分析表明,所提出的模型存在一个唯一的最大解,该解在非负初始条件下保持非负,并且在所有大于零的 $t$ 条件下定义良好。此外,还进行了不同参数值的数值模拟,以研究系统去除一定比例的捕食者或猎物的影响。数值模拟试图例证和实践本文所证明的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信