The Manin–Peyre conjecture for smooth spherical Fano threefolds

Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi
{"title":"The Manin–Peyre conjecture for smooth spherical Fano threefolds","authors":"Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi","doi":"10.1007/s00029-024-00952-4","DOIUrl":null,"url":null,"abstract":"<p>The Manin–Peyre conjecture is established for smooth spherical Fano threefolds of semisimple rank one and type <i>N</i>. Together with the previously solved case <i>T</i> and the toric cases, this covers all types of smooth spherical Fano threefolds. The case <i>N</i> features a number of structural novelties; most notably, one may lose regularity of the ambient toric variety, the height conditions may contain fractional exponents, and it may be necessary to exclude a thin subset with exceptionally many rational points from the count, as otherwise Manin’s conjecture in its original form would turn out to be incorrect.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"334 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00952-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Manin–Peyre conjecture is established for smooth spherical Fano threefolds of semisimple rank one and type N. Together with the previously solved case T and the toric cases, this covers all types of smooth spherical Fano threefolds. The case N features a number of structural novelties; most notably, one may lose regularity of the ambient toric variety, the height conditions may contain fractional exponents, and it may be necessary to exclude a thin subset with exceptionally many rational points from the count, as otherwise Manin’s conjecture in its original form would turn out to be incorrect.

光滑球面法诺三围的马宁-佩雷猜想
马宁-佩雷猜想是针对半简单秩为一且类型为 N 的光滑球面法诺三折叠而建立的。连同之前已解决的 T 和环状情况,它涵盖了所有类型的光滑球面法诺三折叠。N 情况具有许多结构上的新颖之处;最值得注意的是,我们可能会失去周围环状变体的正则性,高度条件可能包含分数指数,而且可能有必要从计数中排除具有特别多有理点的薄子集,否则马宁猜想的原始形式就会被证明是不正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信