Flexible Clustering with a Sparse Mixture of Generalized Hyperbolic Distributions

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Alexa A. Sochaniwsky, Michael P. B. Gallaugher, Yang Tang, Paul D. McNicholas
{"title":"Flexible Clustering with a Sparse Mixture of Generalized Hyperbolic Distributions","authors":"Alexa A. Sochaniwsky, Michael P. B. Gallaugher, Yang Tang, Paul D. McNicholas","doi":"10.1007/s00357-024-09479-x","DOIUrl":null,"url":null,"abstract":"<p>Robust clustering of high-dimensional data is an important topic because clusters in real datasets are often heavy-tailed and/or asymmetric. Traditional approaches to model-based clustering often fail for high dimensional data, e.g., due to the number of free covariance parameters. A parametrization of the component scale matrices for the mixture of generalized hyperbolic distributions is proposed. This parameterization includes a penalty term in the likelihood. An analytically feasible expectation-maximization algorithm is developed by placing a gamma-lasso penalty constraining the concentration matrix. The proposed methodology is investigated through simulation studies and illustrated using two real datasets.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"33 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09479-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Robust clustering of high-dimensional data is an important topic because clusters in real datasets are often heavy-tailed and/or asymmetric. Traditional approaches to model-based clustering often fail for high dimensional data, e.g., due to the number of free covariance parameters. A parametrization of the component scale matrices for the mixture of generalized hyperbolic distributions is proposed. This parameterization includes a penalty term in the likelihood. An analytically feasible expectation-maximization algorithm is developed by placing a gamma-lasso penalty constraining the concentration matrix. The proposed methodology is investigated through simulation studies and illustrated using two real datasets.

Abstract Image

使用广义双曲分布的稀疏混合物进行灵活聚类
高维数据的稳健聚类是一个重要课题,因为真实数据集中的聚类通常是重尾和/或不对称的。基于模型的传统聚类方法往往无法处理高维数据,例如,由于自由协方差参数的数量。本文提出了广义双曲分布混合物的分量标度矩阵参数化。该参数化包括似然中的惩罚项。通过对浓度矩阵施加伽马-拉索(gamma-lasso)惩罚约束,开发了一种分析上可行的期望最大化算法。通过模拟研究对所提出的方法进行了调查,并使用两个真实数据集进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信