{"title":"Distributed neuro-fuzzy routing for energy-efficient IoT smart city applications in WSN","authors":"S. Jeevanantham, C. Venkatesan, B. Rebekka","doi":"10.1007/s11235-024-01195-6","DOIUrl":null,"url":null,"abstract":"<p>Wireless sensor networks (WSNs) enable seamless data gathering and communication, facilitating efficient and real-time decision-making in IoT monitoring applications. However, the energy required to maintain communication in WSN-based IoT networks poses significant challenges, such as packet loss, packet drop, and rapid energy depletion. These issues reduce network life and performance, increasing the risk of delayed packet delivery. To address these challenges, this work presents a novel energy-efficient distributed neuro-fuzzy routing model executed in two stages to enhance communication efficiency and energy management in WSN-based IoT applications. In the first stage, nodes with high energy levels are predicted using a fusion of distributed learning with neural networks and fuzzy logic. In the second stage, clustering and routing are performed based on the predicted eligible nodes, incorporating thresholds for energy and distance with two combined metrics. The cluster head (CH) combined metric optimizes cluster head selection, while the next-hop combined metric facilitates efficient multi-hop communication. Extensive simulation results demonstrate that the proposed model significantly enhances network lifetime compared to EANFR, RBFNN T2F, and TTDFP by 9.48%, 25%, and 31.5%, respectively.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01195-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks (WSNs) enable seamless data gathering and communication, facilitating efficient and real-time decision-making in IoT monitoring applications. However, the energy required to maintain communication in WSN-based IoT networks poses significant challenges, such as packet loss, packet drop, and rapid energy depletion. These issues reduce network life and performance, increasing the risk of delayed packet delivery. To address these challenges, this work presents a novel energy-efficient distributed neuro-fuzzy routing model executed in two stages to enhance communication efficiency and energy management in WSN-based IoT applications. In the first stage, nodes with high energy levels are predicted using a fusion of distributed learning with neural networks and fuzzy logic. In the second stage, clustering and routing are performed based on the predicted eligible nodes, incorporating thresholds for energy and distance with two combined metrics. The cluster head (CH) combined metric optimizes cluster head selection, while the next-hop combined metric facilitates efficient multi-hop communication. Extensive simulation results demonstrate that the proposed model significantly enhances network lifetime compared to EANFR, RBFNN T2F, and TTDFP by 9.48%, 25%, and 31.5%, respectively.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.