Automated prediction of ground state spin for transition metal complexes†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuri Cho, Ruben Laplaza, Sergi Vela and Clémence Corminboeuf
{"title":"Automated prediction of ground state spin for transition metal complexes†","authors":"Yuri Cho, Ruben Laplaza, Sergi Vela and Clémence Corminboeuf","doi":"10.1039/D4DD00093E","DOIUrl":null,"url":null,"abstract":"<p >Exploiting crystallographic data repositories for large-scale quantum chemical computations requires the rapid and accurate extraction of the molecular structure, charge and spin from the crystallographic information file. Here, we develop a general approach to assign the ground state spin of transition metal complexes, in complement to our previous efforts on determining metal oxidation states and bond order within the <em>cell2mol</em> software. Starting from a database of 31k transition metal complexes extracted from the Cambridge Structural Database with <em>cell2mol</em>, we construct the TM-GSspin dataset, which contains 2063 mononuclear first row transition metal complexes and their computed ground state spins. TM-GSspin is highly diverse in terms of metals, metal oxidation states, coordination geometries, and coordination sphere compositions. Based on TM-GSspin, we identify correlations between structural and electronic features of the complexes and their ground state spins to develop a rule-based spin state assignment model. Leveraging this knowledge, we construct interpretable descriptors and build a statistical model achieving 98% cross-validated accuracy in predicting the ground state spin across the board. Our approach provides a practical way to determine the ground state spin of transition metal complexes directly from crystal structures without additional computations, thus enabling the automated use of crystallographic data for large-scale computations involving transition metal complexes.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00093e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00093e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exploiting crystallographic data repositories for large-scale quantum chemical computations requires the rapid and accurate extraction of the molecular structure, charge and spin from the crystallographic information file. Here, we develop a general approach to assign the ground state spin of transition metal complexes, in complement to our previous efforts on determining metal oxidation states and bond order within the cell2mol software. Starting from a database of 31k transition metal complexes extracted from the Cambridge Structural Database with cell2mol, we construct the TM-GSspin dataset, which contains 2063 mononuclear first row transition metal complexes and their computed ground state spins. TM-GSspin is highly diverse in terms of metals, metal oxidation states, coordination geometries, and coordination sphere compositions. Based on TM-GSspin, we identify correlations between structural and electronic features of the complexes and their ground state spins to develop a rule-based spin state assignment model. Leveraging this knowledge, we construct interpretable descriptors and build a statistical model achieving 98% cross-validated accuracy in predicting the ground state spin across the board. Our approach provides a practical way to determine the ground state spin of transition metal complexes directly from crystal structures without additional computations, thus enabling the automated use of crystallographic data for large-scale computations involving transition metal complexes.

Abstract Image

过渡金属复合物基态自旋的自动预测
利用晶体学数据资源库进行大规模量子化学计算,需要从晶体学信息文件中快速准确地提取分子结构、电荷和自旋。在此,我们开发了一种分配过渡金属复合物基态自旋的通用方法,以补充我们之前在 cell2mol 软件中确定金属氧化态和键序的工作。从利用 cell2mol 从剑桥结构数据库提取的 31K 个过渡金属配合物数据库开始,我们构建了 TM-GSspin 数据集,其中包含 2,063 个单核第一行过渡金属配合物及其计算出的基态自旋。TM-GSspin 在金属、金属氧化态、配位几何和配位层组成方面具有高度多样性。在 TM-GSspin 的基础上,我们确定了复合物的结构和电子特征与其基态自旋之间的相关性,从而开发出一种基于规则的自旋态分配模型。利用这些知识,我们构建了可解释的描述符,并建立了一个统计模型,其预测基态自旋的交叉验证准确率达到 98%。我们的方法提供了一种直接从晶体结构确定过渡金属复合物基态自旋的实用方法,无需额外计算,从而使晶体学数据能够自动用于涉及过渡金属复合物的大规模计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信