Komal Trivedi, Bhanupriya Yadav, Rohit Shrivastav, Chetan K. Modi
{"title":"Synthesis of Ternary Photoactive Heterojunction B/CN@rGO for Visible Light Driven Selective Photooxidation of Benzyl Alcohol","authors":"Komal Trivedi, Bhanupriya Yadav, Rohit Shrivastav, Chetan K. Modi","doi":"10.1002/cptc.202400171","DOIUrl":null,"url":null,"abstract":"<p>This work introduces a novel ternary heterostructure as a photocatalyst to selectively produce benzaldehyde from benzyl alcohol through photooxidation. We have synthesized bismuth vanadate functionalized graphitic carbon nitride decorated reduced graphene oxide B/CN@rGO ternary composite and subsequently subjected it to several characterization methodologies like XRD, FE-SEM, HR-TEM, XPS, FT-IR, TGA, UV-vis DRS, and EIS. The synthesized B/CN@rGO was effectively used in the photooxidation process to produce benzaldehyde from benzyl alcohol, employing a cost-effective white LED light of 200 W. Remarkable selectivity (100 %) towards the benzaldehyde was attained employing green oxidant H<sub>2</sub>O<sub>2</sub>. In addition, the synthesized photocatalyst showed unique thermal stability and could be reused for over five cycles without compromising the selectivity of the resulting product. Based on our comprehensive review of the existing study, the present work introduces a unique approach for the photooxidation of benzyl alcohol, employing B/CN@rGO ternary heterostructure as the photocatalyst.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400171","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a novel ternary heterostructure as a photocatalyst to selectively produce benzaldehyde from benzyl alcohol through photooxidation. We have synthesized bismuth vanadate functionalized graphitic carbon nitride decorated reduced graphene oxide B/CN@rGO ternary composite and subsequently subjected it to several characterization methodologies like XRD, FE-SEM, HR-TEM, XPS, FT-IR, TGA, UV-vis DRS, and EIS. The synthesized B/CN@rGO was effectively used in the photooxidation process to produce benzaldehyde from benzyl alcohol, employing a cost-effective white LED light of 200 W. Remarkable selectivity (100 %) towards the benzaldehyde was attained employing green oxidant H2O2. In addition, the synthesized photocatalyst showed unique thermal stability and could be reused for over five cycles without compromising the selectivity of the resulting product. Based on our comprehensive review of the existing study, the present work introduces a unique approach for the photooxidation of benzyl alcohol, employing B/CN@rGO ternary heterostructure as the photocatalyst.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.