Spherical adjunctions of stable $$\infty $$ -categories and the relative S-construction

IF 1 3区 数学 Q1 MATHEMATICS
Tobias Dyckerhoff, Mikhail Kapranov, Vadim Schechtman, Yan Soibelman
{"title":"Spherical adjunctions of stable $$\\infty $$ -categories and the relative S-construction","authors":"Tobias Dyckerhoff, Mikhail Kapranov, Vadim Schechtman, Yan Soibelman","doi":"10.1007/s00209-024-03549-x","DOIUrl":null,"url":null,"abstract":"<p>We develop the theory of semi-orthogonal decompositions and spherical functors in the framework of stable <span>\\({\\infty }\\)</span>-categories. We study the relative Waldhausen S-construction <span>\\(S_\\bullet (F)\\)</span> of the spherical functor <i>F</i> and show that it has a natural paracyclic structure (“rotation symmetry”). This fulfills a part of the general program of perverse schobers which are conjectural categorical upgrades of perverse sheaves. If we view a spherical functor as defining a schober on a disk, then each component <span>\\(S_n(F)\\)</span> of the S-construction gives a categorification of the cohomology of a perverse sheaf on a disk with support in a union of <span>\\((n+1)\\)</span> closed arcs in the boundary. In other words, <span>\\(S_n(F)\\)</span> can be interpreted as the Fukaya category of the disk with coefficients in the schober and with support (“stops”) at the boundary arcs. The importance of the paracyclic structure is that it allows us to naturally associate the above data to disks on oriented surfaces. The action of the paracyclic rotation is a categorical analog of the monodromy of a perverse sheaf.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03549-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the theory of semi-orthogonal decompositions and spherical functors in the framework of stable \({\infty }\)-categories. We study the relative Waldhausen S-construction \(S_\bullet (F)\) of the spherical functor F and show that it has a natural paracyclic structure (“rotation symmetry”). This fulfills a part of the general program of perverse schobers which are conjectural categorical upgrades of perverse sheaves. If we view a spherical functor as defining a schober on a disk, then each component \(S_n(F)\) of the S-construction gives a categorification of the cohomology of a perverse sheaf on a disk with support in a union of \((n+1)\) closed arcs in the boundary. In other words, \(S_n(F)\) can be interpreted as the Fukaya category of the disk with coefficients in the schober and with support (“stops”) at the boundary arcs. The importance of the paracyclic structure is that it allows us to naturally associate the above data to disks on oriented surfaces. The action of the paracyclic rotation is a categorical analog of the monodromy of a perverse sheaf.

Abstract Image

稳定 $$\infty $$ 类的球面邻接和相对 S 构建
我们在稳定({\infty }\)范畴的框架内发展了半正交分解和球形函子的理论。我们研究了球形函子 F 的相对瓦尔德豪森 S 构建(S_\bullet (F)\),并证明了它有一个自然的旁环结构("旋转对称性")。这就完成了反向舍伯尔一般计划的一部分,反向舍伯尔是反向剪子的猜想分类升级。如果我们把球面函子看作是定义了一个圆盘上的schober,那么S构造的每个分量\(S_n(F)\)都给出了一个圆盘上的反向剪子的同调分类,这个反向剪子的支撑在边界上的\((n+1)\)闭弧的联合中。换句话说,\(S_n(F)\)可以被解释为具有肖伯尔系数并在边界弧上具有支持("止点")的圆盘的富卡亚范畴。准环结构的重要性在于,它允许我们把上述数据自然地与定向表面上的圆盘联系起来。准环旋转的作用是反剪单色性的分类类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信