Highly Sensitive Two-Dimensional Ruddlesden-Popper Perovskites for Thermochromic Smart Windows

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2024-07-11 DOI:10.1002/cnma.202400306
Ruijie Han, Qi Yue, Yingjie Cao, Duo Wei, Xiaolin Liu, Jia Lin
{"title":"Highly Sensitive Two-Dimensional Ruddlesden-Popper Perovskites for Thermochromic Smart Windows","authors":"Ruijie Han,&nbsp;Qi Yue,&nbsp;Yingjie Cao,&nbsp;Duo Wei,&nbsp;Xiaolin Liu,&nbsp;Jia Lin","doi":"10.1002/cnma.202400306","DOIUrl":null,"url":null,"abstract":"<p>With the growing demand for high-performance smart windows, the discover of a class of thermochromic materials with reversible cycling and rapid response characteristics has become urgent. In this work, we have uncovered a two-dimensional (2D) Ruddlesden-Popper (RP) phase halide perovskite, (PMA)<sub>2</sub>MAPb<sub>2</sub>I<sub>7−x</sub>Cl<sub>x</sub>, where PMA=C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>NH<sub>3</sub> and MA=CH<sub>3</sub>NH<sub>3</sub>, exhibiting exceptional reversible thermochromic properties. The 2D RP phase perovskite thin film features a low transition temperature (Tc=30 °C from the hydrated state to the hot state, along with a fast transition time of 40 s. Furthermore, the addition of 0.5 times excess MAI significantly enhances the visible light transmittance of the hydrated state. Characteristic hydration peaks in X-ray diffraction patterns and O−H bond absorption peaks Fourier-transform infrared spectra are observed in the thin film in its hydrated state, which disappear in the hot state, validating its reversible thermochromic properties. Additionally, a solar cell based on the thermochromic 2D RP phase thin film achieves a power conversion efficiency of 2.31 %, offering a promising solution for advanced smart window technologies.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400306","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing demand for high-performance smart windows, the discover of a class of thermochromic materials with reversible cycling and rapid response characteristics has become urgent. In this work, we have uncovered a two-dimensional (2D) Ruddlesden-Popper (RP) phase halide perovskite, (PMA)2MAPb2I7−xClx, where PMA=C6H5CH2NH3 and MA=CH3NH3, exhibiting exceptional reversible thermochromic properties. The 2D RP phase perovskite thin film features a low transition temperature (Tc=30 °C from the hydrated state to the hot state, along with a fast transition time of 40 s. Furthermore, the addition of 0.5 times excess MAI significantly enhances the visible light transmittance of the hydrated state. Characteristic hydration peaks in X-ray diffraction patterns and O−H bond absorption peaks Fourier-transform infrared spectra are observed in the thin film in its hydrated state, which disappear in the hot state, validating its reversible thermochromic properties. Additionally, a solar cell based on the thermochromic 2D RP phase thin film achieves a power conversion efficiency of 2.31 %, offering a promising solution for advanced smart window technologies.

用于热致变色智能窗的高灵敏度二维 Ruddlesden-Popper Perovskites
随着人们对高性能智能窗户的需求日益增长,发现一类具有可逆循环和快速响应特性的热致变色材料已成为当务之急。在这项工作中,我们发现了一种二维(2D)Ruddlesden-Popper(RP)相卤化物包晶体--(PMA)2MAPb2I7-xClx,其中 PMA = C6H5CH2NH3,MA = CH3NH3,表现出优异的可逆热致变色特性。这种二维 RP 相包晶石薄膜从水合态到热态的转变温度低至 30 °C,转变时间短至 40 秒。此外,添加 0.5 倍过量的 MAI 能显著提高水合态的可见光透射率。在水合态薄膜的 X 射线衍射图谱中可以观察到特征性的水合峰,在傅立叶变换红外光谱中可以观察到 O-H 键吸收峰,这些峰在热态时消失,从而验证了其可逆热致变色特性。此外,基于热致变色二维 RP 相薄膜的太阳能电池实现了 2.31% 的功率转换效率,为先进的智能窗户技术提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信