On Singer’s conjecture for the fourth algebraic transfer in certain generic degrees

Pub Date : 2024-07-13 DOI:10.1007/s40062-024-00351-8
Ɖặng Võ Phúc
{"title":"On Singer’s conjecture for the fourth algebraic transfer in certain generic degrees","authors":"Ɖặng Võ Phúc","doi":"10.1007/s40062-024-00351-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>A</i> be the Steenrod algebra over the finite field <span>\\(k:= {\\mathbb {F}}_2\\)</span> and <i>G</i>(<i>q</i>) be the general linear group of rank <i>q</i> over <i>k</i>. A well-known open problem in algebraic topology is the explicit determination of the cohomology groups of the Steenrod algebra, <span>\\(\\textrm{Ext}^{q, *}_A(k, k),\\)</span> for all homological degrees <span>\\(q \\geqslant 0.\\)</span> The Singer algebraic transfer of rank <i>q</i>,  formulated by William Singer in 1989, serves as a valuable method for describing that Ext groups. This transfer maps from the coinvariants of a certain representation of <i>G</i>(<i>q</i>) to <span>\\(\\textrm{Ext}^{q, *}_A(k, k).\\)</span> Singer predicted that the algebraic transfer is always injective, but this has gone unanswered for all <span>\\(q\\geqslant 4.\\)</span> This paper establishes Singer’s conjecture for rank four in the generic degrees <span>\\(n = 2^{s+t+1} +2^{s+1} - 3\\)</span> whenever <span>\\(t\\ne 3\\)</span> and <span>\\(s\\geqslant 1,\\)</span> and <span>\\(n = 2^{s+t} + 2^{s} - 2\\)</span> whenever <span>\\(t\\ne 2,\\, 3,\\, 4\\)</span> and <span>\\(s\\geqslant 1.\\)</span> In conjunction with our previous results, this completes the proof of the Singer conjecture for rank four.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00351-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be the Steenrod algebra over the finite field \(k:= {\mathbb {F}}_2\) and G(q) be the general linear group of rank q over k. A well-known open problem in algebraic topology is the explicit determination of the cohomology groups of the Steenrod algebra, \(\textrm{Ext}^{q, *}_A(k, k),\) for all homological degrees \(q \geqslant 0.\) The Singer algebraic transfer of rank q,  formulated by William Singer in 1989, serves as a valuable method for describing that Ext groups. This transfer maps from the coinvariants of a certain representation of G(q) to \(\textrm{Ext}^{q, *}_A(k, k).\) Singer predicted that the algebraic transfer is always injective, but this has gone unanswered for all \(q\geqslant 4.\) This paper establishes Singer’s conjecture for rank four in the generic degrees \(n = 2^{s+t+1} +2^{s+1} - 3\) whenever \(t\ne 3\) and \(s\geqslant 1,\) and \(n = 2^{s+t} + 2^{s} - 2\) whenever \(t\ne 2,\, 3,\, 4\) and \(s\geqslant 1.\) In conjunction with our previous results, this completes the proof of the Singer conjecture for rank four.

分享
查看原文
关于辛格对某些通用度数中第四代数转移的猜想
代数拓扑学中一个著名的未决问题是明确确定斯泰恩德代数的同调群,(textrm{Ext}^{q, *}_A(k, k),\) for all homological degrees \(q \geqslant 0.\由威廉-辛格(William Singer)于 1989 年提出的秩 q 的辛格代数转移(Singer algebraic transfer of rank q)是描述 Ext 群的一种有价值的方法。这种转移是从 G(q) 某个表示的共变映射到 (textrm{Ext}^{q, *}_A(k, k).辛格预言代数转移总是注入式的,但对于所有的 \(q\geqslant 4,这一点一直没有答案。\本文建立了辛格对一般度数中秩4的猜想:当(t/ne 3\) 和(s/geqslant 1,)时,(n = 2^{s+t+1} +2^{s+1} - 3\) ;当(t/ne 2,,3,,4\) 和(s/geqslant 1,)时,(n = 2^{s+t} + 2^{s} - 2\)。\结合我们之前的结果,这就完成了秩4的辛格猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信