Pseudocapacitive TiNb0.8O4 microspheres for fast-charging and durable sodium storage

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xinyuan Li, Tianyi Zhang, Zhuo Chen, Hao Fan, Ping Hu, Congcong Cai, Liang Zhou
{"title":"Pseudocapacitive TiNb0.8O4 microspheres for fast-charging and durable sodium storage","authors":"Xinyuan Li, Tianyi Zhang, Zhuo Chen, Hao Fan, Ping Hu, Congcong Cai, Liang Zhou","doi":"10.1016/j.mtener.2024.101637","DOIUrl":null,"url":null,"abstract":"Titanium niobium oxides are promising anode materials for sodium-ion batteries (SIBs) due to their efficient ion diffusion channels. However, their poor electronic conductivity impedes the longevity of SIBs. To address these issues, core@shell TiNbO/C@C microspheres (TNO/C@C) have been developed to enhance electron conduction. The TNO/C@C, featuring a bulk and surface dual conductive configuration, outperforms pure TNO and other control samples such as TNO/C and TNO@C that rely solely on either bulk or surface electronic conductors. Thus, the TNO/C@C achieves a fast-charging rate of 200 C, allowing full charging in 2 s, and demonstrates long-term stability over 10,000 cycles. Raman analysis reveals a zero-strain feature during sodiation/desodiation, which minimizes structural degradation over repeated cycles. electrochemical impedance spectroscopy test indicates low electron resistance, enhancing both the rate capability and stability. Therefore, the bulk and surface dual conducting strategy offers new insights into robust and fast-charging SIBs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101637","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium niobium oxides are promising anode materials for sodium-ion batteries (SIBs) due to their efficient ion diffusion channels. However, their poor electronic conductivity impedes the longevity of SIBs. To address these issues, core@shell TiNbO/C@C microspheres (TNO/C@C) have been developed to enhance electron conduction. The TNO/C@C, featuring a bulk and surface dual conductive configuration, outperforms pure TNO and other control samples such as TNO/C and TNO@C that rely solely on either bulk or surface electronic conductors. Thus, the TNO/C@C achieves a fast-charging rate of 200 C, allowing full charging in 2 s, and demonstrates long-term stability over 10,000 cycles. Raman analysis reveals a zero-strain feature during sodiation/desodiation, which minimizes structural degradation over repeated cycles. electrochemical impedance spectroscopy test indicates low electron resistance, enhancing both the rate capability and stability. Therefore, the bulk and surface dual conducting strategy offers new insights into robust and fast-charging SIBs.

Abstract Image

用于快速充电和持久储钠的伪电容性 TiNb0.8O4 微球
钛铌氧化物因其高效的离子扩散通道而成为钠离子电池(SIB)的理想阳极材料。然而,它们较差的电子导电性阻碍了 SIB 的使用寿命。为了解决这些问题,人们开发了核@壳 TiNbO/C@C 微球(TNO/C@C)来增强电子传导。TNO/C@C 具有块体和表面双重导电结构,其性能优于纯 TNO 和其他仅依靠块体或表面电子导体的对照样品(如 TNO/C 和 TNO@C)。因此,TNO/C@C 实现了 200 C 的快速充电速率,可在 2 秒内充满电,并具有超过 10,000 次循环的长期稳定性。拉曼分析表明,在钠化/解钠过程中存在零应变特征,这最大程度地减少了反复循环中的结构退化。电化学阻抗谱测试表明,电子电阻较低,从而提高了速率能力和稳定性。因此,块体和表面双导电策略为坚固耐用的快速充电 SIB 提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信