{"title":"Shear strength equation of soils in a wide suction range under various initial void ratios","authors":"Zhaoyang Song, Zhihong Zhang","doi":"10.1002/vzj2.20368","DOIUrl":null,"url":null,"abstract":"Shear strength equation is a basic theory for solving many geotechnical engineering problems. Although the shear strength equation has received widespread attention, shear strength of clay under wide suction range and different initial void ratio conditions cannot be well predicted. This study aims to establish a new strength equation applicable to soils within a wide suction range. Considering the capillary and adsorptive parts of soil–water interactions, a cohesion expression related to the degree of adsorbed water saturation <jats:italic>S</jats:italic><jats:sub>ra</jats:sub> and the effective stress related to the degree of capillary water saturation <jats:italic>S</jats:italic><jats:sub>rc</jats:sub> are proposed. After that, based on the Mohr–Coulomb theory, a shear strength equation of unsaturated soils in a wide range of suction under various is proposed. Five parameters are included in the equation. It is easy to calibrate them through shear tests on saturated and the fully dried soils. It is verified that not only the sandy clay till and clayed silt but also the expansive soil's shear strength in wide ranges of suction under various can be well predicted.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"32 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20368","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Shear strength equation is a basic theory for solving many geotechnical engineering problems. Although the shear strength equation has received widespread attention, shear strength of clay under wide suction range and different initial void ratio conditions cannot be well predicted. This study aims to establish a new strength equation applicable to soils within a wide suction range. Considering the capillary and adsorptive parts of soil–water interactions, a cohesion expression related to the degree of adsorbed water saturation Sra and the effective stress related to the degree of capillary water saturation Src are proposed. After that, based on the Mohr–Coulomb theory, a shear strength equation of unsaturated soils in a wide range of suction under various is proposed. Five parameters are included in the equation. It is easy to calibrate them through shear tests on saturated and the fully dried soils. It is verified that not only the sandy clay till and clayed silt but also the expansive soil's shear strength in wide ranges of suction under various can be well predicted.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.