The weak elliptic Harnack inequality revisited

IF 0.5 4区 数学 Q3 MATHEMATICS
Jiaxin Hu, Zhenyu Yu
{"title":"The weak elliptic Harnack inequality revisited","authors":"Jiaxin Hu, Zhenyu Yu","doi":"10.4310/ajm.2023.v27.n5.a4","DOIUrl":null,"url":null,"abstract":"In this paper we firstly derive the weak elliptic Harnack inequality from the generalized capacity condition, the tail estimate of jump measure and the Poincaré inequality, for any regular Dirichlet form without killing part on a measure metric space, by using the lemma of growth and the John-Nirenberg inequality. We secondly show several equivalent characterizations of the weak elliptic Harnack inequality for any (not necessarily regular) Dirichlet form. We thirdly present some consequences of the weak elliptic Harnack inequality.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2023.v27.n5.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we firstly derive the weak elliptic Harnack inequality from the generalized capacity condition, the tail estimate of jump measure and the Poincaré inequality, for any regular Dirichlet form without killing part on a measure metric space, by using the lemma of growth and the John-Nirenberg inequality. We secondly show several equivalent characterizations of the weak elliptic Harnack inequality for any (not necessarily regular) Dirichlet form. We thirdly present some consequences of the weak elliptic Harnack inequality.
弱椭圆哈纳克不等式再探讨
在本文中,我们首先利用增长lemma 和约翰-尼伦伯格不等式,从广义容量条件、跳跃度量的尾部估计和波恩卡莱不等式中推导出弱椭圆哈纳克不等式,适用于度量度量空间上任何无杀部分的正则狄利克形式。其次,我们展示了针对任何(不一定规则的)狄里克特形式的弱椭圆哈纳克不等式的几个等价特征。第三,我们介绍弱椭圆哈纳克不等式的一些后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信