Simple solutions of the Yang-Baxter equation of cardinality $p^n$

Ferran Cedo, Jan Okninski
{"title":"Simple solutions of the Yang-Baxter equation of cardinality $p^n$","authors":"Ferran Cedo, Jan Okninski","doi":"arxiv-2407.07907","DOIUrl":null,"url":null,"abstract":"For every prime number p and integer $n>1$, a simple, involutive,\nnon-degenerate set-theoretic solution $(X,r$) of the Yang-Baxter equation of\ncardinality $|X| = p^n$ is constructed. Furthermore, for every\nnon-(square-free) positive integer m which is not the square of a prime number,\na non-simple, indecomposable, irretractable, involutive, non-degenerate\nset-theoretic solution $(X,r)$ of the Yang-Baxter equation of cardinality $|X|\n= m$ is constructed. A recent question of Castelli on the existence of singular\nsolutions of certain type is also answered affirmatively.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For every prime number p and integer $n>1$, a simple, involutive, non-degenerate set-theoretic solution $(X,r$) of the Yang-Baxter equation of cardinality $|X| = p^n$ is constructed. Furthermore, for every non-(square-free) positive integer m which is not the square of a prime number, a non-simple, indecomposable, irretractable, involutive, non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation of cardinality $|X| = m$ is constructed. A recent question of Castelli on the existence of singular solutions of certain type is also answered affirmatively.
杨-巴克斯特方程心数 $p^n$ 的简单解
对于每一个素数 p 和整数 $n>1$,都能构造出卡方根 $|X| = p^n$ 的杨-巴克斯特方程的一个简单、内卷、非退化的集合论解 $(X,r$)。此外,对于每一个不是素数平方的非平方正整数 m,都可以构造出心数 $|X|= m$ 的杨-巴克斯特方程的非简单、不可分解、不可回折、内卷、非退化的集合论解 $(X,r)$。卡斯泰利最近提出的关于某类奇异解存在性的问题也得到了肯定的回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信