Influence of soil‐structure interaction on the behavior of the tower‐foundation system of a horizontal‐axis wind turbine

Iálysson da Silva Medeiros, Maria Isabela Marques da Cunha Vieira Bello, Douglas Mateus de Lima
{"title":"Influence of soil‐structure interaction on the behavior of the tower‐foundation system of a horizontal‐axis wind turbine","authors":"Iálysson da Silva Medeiros, Maria Isabela Marques da Cunha Vieira Bello, Douglas Mateus de Lima","doi":"10.1002/tal.2163","DOIUrl":null,"url":null,"abstract":"The ongoing advancement of wind turbines, aiming for taller towers to harness more intense winds, poses substantial structural challenges. Soil‐structure interaction (SSI) assumes fundamental importance, necessitating precise analysis, and mathematical modeling. This study focuses on examining how SSI influences horizontal‐axis wind turbine tower‐foundation systems. Six numerical models, varying from simplified to more complex representations, are created using the finite element method (FEM) in ANSYS software. The analysis reveals significant sensitivity to support conditions, particularly elastic supports, causing the greatest displacement at the tower's top (1.899 m), highlighting the substantial influence of SSI and second‐order effects. Incorporating SSI and second‐order effects results in a 30.11% increase in von Mises stress at the base flange (73.4 MPa), compared to models excluding these factors. Stress variation along the tower height notably increases with second‐order effects; however, the structure maintains a 13.32% safety margin relative to steel load‐bearing capacity. Foundation analyses indicate stresses exceeding concrete's allowable stress by 24.3%, underscoring the need for foundation optimization. These results stress the importance of considering SSI and geometric nonlinearity for wind turbine development. The lack of comparable studies in literature underscores the significance of this research in advancing the field's knowledge.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Structural Design of Tall and Special Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tal.2163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing advancement of wind turbines, aiming for taller towers to harness more intense winds, poses substantial structural challenges. Soil‐structure interaction (SSI) assumes fundamental importance, necessitating precise analysis, and mathematical modeling. This study focuses on examining how SSI influences horizontal‐axis wind turbine tower‐foundation systems. Six numerical models, varying from simplified to more complex representations, are created using the finite element method (FEM) in ANSYS software. The analysis reveals significant sensitivity to support conditions, particularly elastic supports, causing the greatest displacement at the tower's top (1.899 m), highlighting the substantial influence of SSI and second‐order effects. Incorporating SSI and second‐order effects results in a 30.11% increase in von Mises stress at the base flange (73.4 MPa), compared to models excluding these factors. Stress variation along the tower height notably increases with second‐order effects; however, the structure maintains a 13.32% safety margin relative to steel load‐bearing capacity. Foundation analyses indicate stresses exceeding concrete's allowable stress by 24.3%, underscoring the need for foundation optimization. These results stress the importance of considering SSI and geometric nonlinearity for wind turbine development. The lack of comparable studies in literature underscores the significance of this research in advancing the field's knowledge.
土壤-结构相互作用对水平轴风力涡轮机塔架-基础系统行为的影响
风力涡轮机不断进步,旨在建造更高的塔架以利用更强的风,这给结构带来了巨大的挑战。土-结构相互作用(SSI)具有根本性的重要性,需要进行精确的分析和数学建模。本研究主要探讨 SSI 如何影响水平轴风力涡轮机塔架-基础系统。使用 ANSYS 软件中的有限元法(FEM)创建了六个从简化到更复杂的数值模型。分析结果表明,支撑条件(尤其是弹性支撑)对塔顶位移(1.899 米)的影响非常明显,凸显了 SSI 和二阶效应的重大影响。与不考虑这些因素的模型相比,考虑 SSI 和二阶效应会使基底法兰处的 von Mises 应力(73.4 兆帕)增加 30.11%。随着二阶效应的增加,塔筒高度方向的应力变化也显著增加;不过,相对于钢承载能力,结构仍保持了 13.32% 的安全裕度。地基分析表明,应力超出混凝土容许应力 24.3%,强调了优化地基的必要性。这些结果强调了考虑 SSI 和几何非线性对风力涡轮机开发的重要性。文献中缺乏可比性研究,这凸显了本研究在推动该领域知识发展方面的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信