On maximal solid subspaces of intermediate algebras in C(X)

IF 0.8 3区 数学 Q2 MATHEMATICS
J. M. Domínguez
{"title":"On maximal solid subspaces of intermediate algebras in C(X)","authors":"J. M. Domínguez","doi":"10.1007/s11117-024-01067-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>C</i>(<i>X</i>) be the algebra of all real-valued continuous functions on a Tychonoff space <i>X</i>, and <span>\\(C^*(X)\\)</span> the subalgebra of bounded functions. We prove that if <i>B</i> is any subalgebra of <i>C</i>(<i>X</i>) containing <span>\\(C^*(X)\\)</span>, then no maximal solid subspace of <i>B</i> contains <span>\\(C^*(X)\\)</span>, and we derive from this that the maximal solid subspaces of <i>B</i> are exactly the real maximal ideals of <i>B</i>. Then we extend the above to the case of intermediate algebras in <i>A</i>, where <i>A</i> is a <span>\\(\\varPhi \\)</span>-algebra with bounded inversion.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":"6 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01067-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let C(X) be the algebra of all real-valued continuous functions on a Tychonoff space X, and \(C^*(X)\) the subalgebra of bounded functions. We prove that if B is any subalgebra of C(X) containing \(C^*(X)\), then no maximal solid subspace of B contains \(C^*(X)\), and we derive from this that the maximal solid subspaces of B are exactly the real maximal ideals of B. Then we extend the above to the case of intermediate algebras in A, where A is a \(\varPhi \)-algebra with bounded inversion.

论 C(X) 中中间代数的最大实体子空间
让 C(X) 是泰克诺夫空间 X 上所有实值连续函数的代数,\(C^*(X)\) 是有界函数的子代数。我们证明,如果 B 是 C(X) 的任何包含 \(C^*(X)\) 的子代数,那么 B 的最大实体子空间都不包含 \(C^*(X)\),我们由此推导出 B 的最大实体子空间正是 B 的实最大ideals。然后,我们把上面的方法推广到 A 中的中间代数的情况,其中 A 是一个有界反转的 \(\varPhi \)-代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信