Multigrid Methods Using Block Floating Point Arithmetic

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nils Kohl, Stephen F. McCormick, Rasmus Tamstorf
{"title":"Multigrid Methods Using Block Floating Point Arithmetic","authors":"Nils Kohl, Stephen F. McCormick, Rasmus Tamstorf","doi":"10.1137/23m1581819","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. Block floating point (BFP) arithmetic is currently seeing a resurgence in interest because it requires less power and less chip area and is less complicated to implement in hardware than standard floating point arithmetic. This paper explores the application of BFP to mixed- and progressive-precision multigrid methods, enabling the solution of linear elliptic partial differential equations (PDEs) in energy- and hardware-efficient integer arithmetic. While most existing applications of BFP arithmetic tend to use small block sizes, the block size here is chosen to be maximal such that matrices and vectors share a single exponent for all entries. This is sometimes also referred to as a scaled fixed point format. We provide algorithms for BLAS-like routines for BFP arithmetic that ensure exact vector-vector and matrix-vector computations up to a specified precision. Using these algorithms, we study the asymptotic precision requirements for achieving discretization-error-accuracy. We demonstrate that some computations can be performed using only 4-bit integers, while the number of bits required to attain a certain target accuracy is similar to that of standard floating point arithmetic. Finally, we present a heuristic for full multigrid in BFP arithmetic based on saturation and truncation that still achieves discretization-error-accuracy without the need for expensive normalization steps of intermediate results.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1581819","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Ahead of Print.
Abstract. Block floating point (BFP) arithmetic is currently seeing a resurgence in interest because it requires less power and less chip area and is less complicated to implement in hardware than standard floating point arithmetic. This paper explores the application of BFP to mixed- and progressive-precision multigrid methods, enabling the solution of linear elliptic partial differential equations (PDEs) in energy- and hardware-efficient integer arithmetic. While most existing applications of BFP arithmetic tend to use small block sizes, the block size here is chosen to be maximal such that matrices and vectors share a single exponent for all entries. This is sometimes also referred to as a scaled fixed point format. We provide algorithms for BLAS-like routines for BFP arithmetic that ensure exact vector-vector and matrix-vector computations up to a specified precision. Using these algorithms, we study the asymptotic precision requirements for achieving discretization-error-accuracy. We demonstrate that some computations can be performed using only 4-bit integers, while the number of bits required to attain a certain target accuracy is similar to that of standard floating point arithmetic. Finally, we present a heuristic for full multigrid in BFP arithmetic based on saturation and truncation that still achieves discretization-error-accuracy without the need for expensive normalization steps of intermediate results.
使用分块浮点运算的多网格方法
SIAM 科学计算期刊》,提前印刷。 摘要。与标准浮点运算相比,块浮点运算(Block floating point,BFP)所需功耗更低、芯片面积更小、硬件实现更简单,因此目前正重新引起人们的兴趣。本文探讨了 BFP 在混合精度和级数精度多网格方法中的应用,使线性椭圆偏微分方程 (PDE) 的求解采用节能和硬件效率高的整数运算。大多数现有的 BFP 算法应用倾向于使用较小的块大小,而这里选择的块大小是最大的,这样矩阵和向量的所有条目都共享一个指数。这有时也被称为按比例定点格式。我们为类似 BLAS 的 BFP 算术例程提供了算法,确保在指定精度内进行精确的向量-向量和矩阵-向量计算。利用这些算法,我们研究了实现离散化误差精度的渐进精度要求。我们证明,某些计算只需使用 4 位整数即可完成,而达到特定目标精度所需的位数与标准浮点运算的位数相似。最后,我们提出了一种基于饱和与截断的全多网格 BFP 算法启发式,无需对中间结果进行昂贵的归一化步骤,即可实现离散化误差精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信