Zero-Set Intersection Graph On C+(X)

Soumi Basu, Bedanta Bose
{"title":"Zero-Set Intersection Graph On C+(X)","authors":"Soumi Basu, Bedanta Bose","doi":"arxiv-2407.08235","DOIUrl":null,"url":null,"abstract":"For any Tychonoff space X we have introduced the zero-set in-tersection graph\non {\\Gamma}(C+(X)) and studied the graph properties in connection with the\nalgebraic properties of the semiring C+(X). We have shown that for any two\nrealcompact spaces X and Y the graph isomorphism between {\\Gamma}(C+(X)) and\n{\\Gamma}(C+(Y )), the semiring isomorphism between C+(X) and C+(Y ), the\ntopological homeomorphism between X and Y, the ring isomorphism between C(X)\nand C(Y ) and the graph isomorphism between {\\Gamma}(C(X)) and {\\Gamma}(C(Y ))\nare equivalent.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For any Tychonoff space X we have introduced the zero-set in-tersection graph on {\Gamma}(C+(X)) and studied the graph properties in connection with the algebraic properties of the semiring C+(X). We have shown that for any two realcompact spaces X and Y the graph isomorphism between {\Gamma}(C+(X)) and {\Gamma}(C+(Y )), the semiring isomorphism between C+(X) and C+(Y ), the topological homeomorphism between X and Y, the ring isomorphism between C(X) and C(Y ) and the graph isomorphism between {\Gamma}(C(X)) and {\Gamma}(C(Y )) are equivalent.
C+(X) 上的零集交点图
对于任何泰克诺夫空间 X,我们都引入了零集内交图元 {\Gamma}(C+(X)) 并研究了图的性质与 C+(X)的代数性质的联系。我们证明了对于任意两个实紧凑空间 X 和 Y,{\Gamma}(C+(X)) 和 {\Gamma}(C+(Y )) 之间的图同构,C+(X) 和 C+(Y ) 之间的配系同构、X 和 Y 之间的拓扑同构、C(X)和 C(Y ) 之间的环同构以及 {\Gamma}(C(X)) 和 {\Gamma}(C(Y )) 之间的图同构是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信