Describing chaotic systems

Brandon Le
{"title":"Describing chaotic systems","authors":"Brandon Le","doi":"arxiv-2407.07919","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the Lyapunov exponent definition of chaos and how\nit can be used to quantify the chaotic behavior of a system. We derive a way to\npractically calculate the Lyapunov exponent of a one-dimensional system and use\nit to analyze chaotic behavior of the logistic map, comparing the $r$-varying\nLyapunov exponent to the map's bifurcation diagram. Then, we generalize the\nidea of the Lyapunov exponent to an $n$-dimensional system and explore the\nmathematical background behind the analytic calculation of the Lyapunov\nspectrum. We also outline a method to numerically calculate the maximal\nLyapunov exponent using the periodic renormalization of a perturbation vector\nand a method to numerically calculate the entire Lyapunov spectrum using QR\nfactorization. Finally, we apply both these methods to calculate the Lyapunov\nexponents of the H\\'enon map, a multi-dimensional chaotic system.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"226 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss the Lyapunov exponent definition of chaos and how it can be used to quantify the chaotic behavior of a system. We derive a way to practically calculate the Lyapunov exponent of a one-dimensional system and use it to analyze chaotic behavior of the logistic map, comparing the $r$-varying Lyapunov exponent to the map's bifurcation diagram. Then, we generalize the idea of the Lyapunov exponent to an $n$-dimensional system and explore the mathematical background behind the analytic calculation of the Lyapunov spectrum. We also outline a method to numerically calculate the maximal Lyapunov exponent using the periodic renormalization of a perturbation vector and a method to numerically calculate the entire Lyapunov spectrum using QR factorization. Finally, we apply both these methods to calculate the Lyapunov exponents of the H\'enon map, a multi-dimensional chaotic system.
描述混沌系统
本文讨论了混沌的李亚普诺夫指数定义,以及如何用它来量化系统的混沌行为。我们推导了一种实际计算一维系统的李雅普诺夫指数的方法,并用它来分析逻辑图的混沌行为,将 $r$ 变化的李雅普诺夫指数与图的分叉图进行比较。然后,我们将李雅普诺夫指数的概念推广到 $n$ 维系统,并探索李雅普诺夫谱分析计算背后的数学背景。我们还概述了一种利用扰动向量的周期重正化数值计算最大李雅普诺夫指数的方法,以及一种利用 QR 因子化数值计算整个李雅普诺夫谱的方法。最后,我们将这两种方法应用于计算 H\'enon 映射这一多维混沌系统的 Lyapunove 指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信