On Some Properties of the Fractional Derivative of the Brownian Local Time

Pub Date : 2024-07-11 DOI:10.1134/s0081543824010115
I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev
{"title":"On Some Properties of the Fractional Derivative of the Brownian Local Time","authors":"I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev","doi":"10.1134/s0081543824010115","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the properties of the fractional derivative <span>\\(D_\\alpha l(t,x)\\)</span> of order <span>\\(\\alpha&lt;1/2\\)</span> of the Brownian local time <span>\\(l(t,x)\\)</span> with respect to the variable <span>\\(x\\)</span>. This derivative is understood as the convolution of the local time with the generalized function <span>\\(|x|^{-1-\\alpha}\\)</span>. We show that <span>\\(D_\\alpha l(t,x)\\)</span> appears naturally in Itô’s formula for the process <span>\\(|w(t)|^{1-\\alpha}\\)</span>. Using the martingale technique, we also study the limit behavior of <span>\\(D_\\alpha l(t,x)\\)</span> as <span>\\(t\\to\\infty\\)</span>. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543824010115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the properties of the fractional derivative \(D_\alpha l(t,x)\) of order \(\alpha<1/2\) of the Brownian local time \(l(t,x)\) with respect to the variable \(x\). This derivative is understood as the convolution of the local time with the generalized function \(|x|^{-1-\alpha}\). We show that \(D_\alpha l(t,x)\) appears naturally in Itô’s formula for the process \(|w(t)|^{1-\alpha}\). Using the martingale technique, we also study the limit behavior of \(D_\alpha l(t,x)\) as \(t\to\infty\).

分享
查看原文
论布朗局部时间分数衍生物的一些特性
摘要 我们研究了布朗局部时间\(l(t,x)\)相对于变量\(x\)的阶\(\alpha<1/2\)的分数导数\(D_\alpha l(t,x)\)的性质。这个导数可以理解为局部时间与广义函数 \(|x|^{-1-\alpha}\)的卷积。我们证明,\(D_\alpha l(t,x)\) 会自然地出现在伊托过程公式中\(|w(t)|^{1-\alpha}\)。利用马丁格尔技术,我们还研究了 \(t\to\infty\) 时 \(D_α l(t,x)\) 的极限行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信