On Extreme Points of Sets in Operator Spaces and State Spaces

Pub Date : 2024-07-11 DOI:10.1134/s0081543824010024
G. G. Amosov, A. M. Bikchentaev, V. Zh. Sakbaev
{"title":"On Extreme Points of Sets in Operator Spaces and State Spaces","authors":"G. G. Amosov, A. M. Bikchentaev, V. Zh. Sakbaev","doi":"10.1134/s0081543824010024","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We obtain a representation of the set of quantum states in terms of barycenters of nonnegative normalized finitely additive measures on the unit sphere <span>\\(S_1(\\mathcal H)\\)</span> of a Hilbert space <span>\\(\\mathcal H\\)</span>. For a measure on <span>\\(S_1(\\mathcal H)\\)</span>, we find conditions in terms of its properties under which the barycenter of this measure belongs to the set of extreme points of the family of quantum states and to the set of normal states. The unitary elements of a unital <span>\\(\\mathrm C^*\\)</span>-algebra are characterized in terms of extreme points. We also study extreme points <span>\\(\\mathrm{extr}(\\mathcal E^1)\\)</span> of the unit ball <span>\\(\\mathcal E^1\\)</span> of a normed ideal operator space <span>\\(\\langle\\mathcal E,\\|\\kern1pt{\\cdot}\\kern1pt\\|_{\\mathcal E}\\rangle\\)</span> on <span>\\(\\mathcal H\\)</span>. If <span>\\(U\\in\\mathrm{extr}(\\mathcal E^1)\\)</span> for some unitary operator <span>\\(U\\in\\mathcal{B}(\\mathcal H)\\)</span>, then <span>\\(V\\in\\mathrm{extr}(\\mathcal E^1)\\)</span> for all unitary operators <span>\\(V\\in\\mathcal{B}(\\mathcal H)\\)</span>. In addition, we construct quantum correlations corresponding to singular states on the algebra of all bounded operators in a Hilbert space. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543824010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a representation of the set of quantum states in terms of barycenters of nonnegative normalized finitely additive measures on the unit sphere \(S_1(\mathcal H)\) of a Hilbert space \(\mathcal H\). For a measure on \(S_1(\mathcal H)\), we find conditions in terms of its properties under which the barycenter of this measure belongs to the set of extreme points of the family of quantum states and to the set of normal states. The unitary elements of a unital \(\mathrm C^*\)-algebra are characterized in terms of extreme points. We also study extreme points \(\mathrm{extr}(\mathcal E^1)\) of the unit ball \(\mathcal E^1\) of a normed ideal operator space \(\langle\mathcal E,\|\kern1pt{\cdot}\kern1pt\|_{\mathcal E}\rangle\) on \(\mathcal H\). If \(U\in\mathrm{extr}(\mathcal E^1)\) for some unitary operator \(U\in\mathcal{B}(\mathcal H)\), then \(V\in\mathrm{extr}(\mathcal E^1)\) for all unitary operators \(V\in\mathcal{B}(\mathcal H)\). In addition, we construct quantum correlations corresponding to singular states on the algebra of all bounded operators in a Hilbert space.

分享
查看原文
论算子空间和状态空间中集合的极值点
摘要 我们用希尔伯特空间 \(\mathcal H\) 的单位球 \(S_1(\mathcal H)\)上的非负归一化有限相加度量的arycenters 来表示量子态集合。对于 \(S_1(\mathcal H)\)上的一个度量,我们从它的性质方面找到条件,在这些条件下,这个度量的原心属于量子态族的极值点集合和正常态集合。我们用极值点来表征一个单素(\mathrm C^*\)代数的单元元。我们还研究了规范理想算子空间 \(\langle\mathcal E,\|\kern1pt{\cdot}\kern1pt\|_{\mathcal E}\rangle\) 上单位球 \(\mathrm{extr}(\mathcal E^1)\)的极值点。如果 \(U\in\mathrm{extr}(\mathcal E^1)\)对于某个单元算子 \(U\in\mathcal{B}(\mathcal H)\),那么 \(V\in\mathrm{extr}(\mathcal E^1)\)对于所有单元算子 \(V\in\mathcal{B}(\mathcal H)\)。此外,我们还构建了与希尔伯特空间中所有有界算子代数上的奇异状态相对应的量子相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信