{"title":"A spectral collocation scheme for the flow of a piezo-viscous fluid in ducts with slip conditions","authors":"Lorenzo Fusi, Antonio Giovinetto","doi":"10.1007/s00162-024-00713-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we present a numerical scheme based on spectral collocation methods to investigate the flow of a piezo-viscous fluid, i.e., a fluid in which the rheological parameters depend on the pressure. In particular, we consider an incompressible Navier–Stokes fluid with pressure dependent viscosity flowing in: (i) a two-dimensional non-symmetric planar channel; (ii) a three-dimensional axisymmetric non-straight conduit. For both cases we impose the Navier slip boundary conditions that can be reduced to the classical no-slip condition for a proper choice of the slip parameter. We assume that the dependence of the viscosity on the pressure is of exponential type (Barus law), even though the model can be replaced by any other viscosity function. We write the mathematical problem (stress based formulation) and discretize the governing equations through a spectral collocation scheme. The advantage of this numerical procedure, which to the authors’ knowledge has never been used before for this class of fluids, lies in in the ease of implementation and in the accuracy of the solution. To validate our model we compare the numerical solution with the one that can be obtained in the case of small aspect ratio, i.e., the leading order lubrication solution. We perform some numerical simulation to investigate the effects of the pressure-dependent viscosity on the flow. We consider different wall functions to gain insight also on the role played by the channel/duct geometry. In both cases (i), (ii) we find that the increase of the coefficient appearing in the viscosity function results in a global reduction of the flow, as physically expected.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"38 6","pages":"879 - 900"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-024-00713-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-024-00713-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we present a numerical scheme based on spectral collocation methods to investigate the flow of a piezo-viscous fluid, i.e., a fluid in which the rheological parameters depend on the pressure. In particular, we consider an incompressible Navier–Stokes fluid with pressure dependent viscosity flowing in: (i) a two-dimensional non-symmetric planar channel; (ii) a three-dimensional axisymmetric non-straight conduit. For both cases we impose the Navier slip boundary conditions that can be reduced to the classical no-slip condition for a proper choice of the slip parameter. We assume that the dependence of the viscosity on the pressure is of exponential type (Barus law), even though the model can be replaced by any other viscosity function. We write the mathematical problem (stress based formulation) and discretize the governing equations through a spectral collocation scheme. The advantage of this numerical procedure, which to the authors’ knowledge has never been used before for this class of fluids, lies in in the ease of implementation and in the accuracy of the solution. To validate our model we compare the numerical solution with the one that can be obtained in the case of small aspect ratio, i.e., the leading order lubrication solution. We perform some numerical simulation to investigate the effects of the pressure-dependent viscosity on the flow. We consider different wall functions to gain insight also on the role played by the channel/duct geometry. In both cases (i), (ii) we find that the increase of the coefficient appearing in the viscosity function results in a global reduction of the flow, as physically expected.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.