Phase transition for the smallest eigenvalue of covariance matrices

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Zhigang Bao, Jaehun Lee, Xiaocong Xu
{"title":"Phase transition for the smallest eigenvalue of covariance matrices","authors":"Zhigang Bao, Jaehun Lee, Xiaocong Xu","doi":"10.1007/s00440-024-01298-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the smallest non-zero eigenvalue of the sample covariance matrices <span>\\(\\mathcal {S}(Y)=YY^*\\)</span>, where <span>\\(Y=(y_{ij})\\)</span> is an <span>\\(M\\times N\\)</span> matrix with iid mean 0 variance <span>\\(N^{-1}\\)</span> entries. We consider the regime <span>\\(M=M(N)\\)</span> and <span>\\(M/N\\rightarrow c_\\infty \\in \\mathbb {R}{\\setminus } \\{1\\}\\)</span> as <span>\\(N\\rightarrow \\infty \\)</span>. It is known that for the extreme eigenvalues of Wigner matrices and the largest eigenvalue of <span>\\(\\mathcal {S}(Y)\\)</span>, a weak 4th moment condition is necessary and sufficient for the Tracy–Widom law (Ding and Yang in Ann Appl Probab 28(3):1679–1738, 2018. https://doi.org/10.1214/17-AAP1341; Lee and Yin in Duke Math J 163(1):117–173, 2014. https://doi.org/10.1215/00127094-2414767). In this paper, we show that the Tracy–Widom law is more robust for the smallest eigenvalue of <span>\\(\\mathcal {S}(Y)\\)</span>, by discovering a phase transition induced by the fatness of the tail of <span>\\(y_{ij}\\)</span>’s. More specifically, we assume that <span>\\(y_{ij}\\)</span> is symmetrically distributed with tail probability <span>\\(\\mathbb {P}(|\\sqrt{N}y_{ij}|\\ge x)\\sim x^{-\\alpha }\\)</span> when <span>\\(x\\rightarrow \\infty \\)</span>, for some <span>\\(\\alpha \\in (2,4)\\)</span>. We show the following conclusions: (1) When <span>\\(\\alpha &gt;\\frac{8}{3}\\)</span>, the smallest eigenvalue follows the Tracy–Widom law on scale <span>\\(N^{-\\frac{2}{3}}\\)</span>; (2) When <span>\\(2&lt;\\alpha &lt;\\frac{8}{3}\\)</span>, the smallest eigenvalue follows the Gaussian law on scale <span>\\(N^{-\\frac{\\alpha }{4}}\\)</span>; (3) When <span>\\(\\alpha =\\frac{8}{3}\\)</span>, the distribution is given by an interpolation between Tracy–Widom and Gaussian; (4) In case <span>\\(\\alpha \\le \\frac{10}{3}\\)</span>, in addition to the left edge of the MP law, a deterministic shift of order <span>\\(N^{1-\\frac{\\alpha }{2}}\\)</span> shall be subtracted from the smallest eigenvalue, in both the Tracy–Widom law and the Gaussian law. Overall speaking, our proof strategy is inspired by Aggarwal et al. (J Eur Math Soc 23(11):3707–3800, 2021. https://doi.org/10.4171/jems/1089) which is originally done for the bulk regime of the Lévy Wigner matrices. In addition to various technical complications arising from the bulk-to-edge extension, two ingredients are needed for our derivation: an intermediate left edge local law based on a simple but effective matrix minor argument, and a mesoscopic CLT for the linear spectral statistic with asymptotic expansion for its expectation.\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"28 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01298-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the smallest non-zero eigenvalue of the sample covariance matrices \(\mathcal {S}(Y)=YY^*\), where \(Y=(y_{ij})\) is an \(M\times N\) matrix with iid mean 0 variance \(N^{-1}\) entries. We consider the regime \(M=M(N)\) and \(M/N\rightarrow c_\infty \in \mathbb {R}{\setminus } \{1\}\) as \(N\rightarrow \infty \). It is known that for the extreme eigenvalues of Wigner matrices and the largest eigenvalue of \(\mathcal {S}(Y)\), a weak 4th moment condition is necessary and sufficient for the Tracy–Widom law (Ding and Yang in Ann Appl Probab 28(3):1679–1738, 2018. https://doi.org/10.1214/17-AAP1341; Lee and Yin in Duke Math J 163(1):117–173, 2014. https://doi.org/10.1215/00127094-2414767). In this paper, we show that the Tracy–Widom law is more robust for the smallest eigenvalue of \(\mathcal {S}(Y)\), by discovering a phase transition induced by the fatness of the tail of \(y_{ij}\)’s. More specifically, we assume that \(y_{ij}\) is symmetrically distributed with tail probability \(\mathbb {P}(|\sqrt{N}y_{ij}|\ge x)\sim x^{-\alpha }\) when \(x\rightarrow \infty \), for some \(\alpha \in (2,4)\). We show the following conclusions: (1) When \(\alpha >\frac{8}{3}\), the smallest eigenvalue follows the Tracy–Widom law on scale \(N^{-\frac{2}{3}}\); (2) When \(2<\alpha <\frac{8}{3}\), the smallest eigenvalue follows the Gaussian law on scale \(N^{-\frac{\alpha }{4}}\); (3) When \(\alpha =\frac{8}{3}\), the distribution is given by an interpolation between Tracy–Widom and Gaussian; (4) In case \(\alpha \le \frac{10}{3}\), in addition to the left edge of the MP law, a deterministic shift of order \(N^{1-\frac{\alpha }{2}}\) shall be subtracted from the smallest eigenvalue, in both the Tracy–Widom law and the Gaussian law. Overall speaking, our proof strategy is inspired by Aggarwal et al. (J Eur Math Soc 23(11):3707–3800, 2021. https://doi.org/10.4171/jems/1089) which is originally done for the bulk regime of the Lévy Wigner matrices. In addition to various technical complications arising from the bulk-to-edge extension, two ingredients are needed for our derivation: an intermediate left edge local law based on a simple but effective matrix minor argument, and a mesoscopic CLT for the linear spectral statistic with asymptotic expansion for its expectation.

Abstract Image

协方差矩阵最小特征值的相变
在本文中,我们研究样本协方差矩阵的最小非零特征值(\mathcal {S}(Y)=YY^*\), 其中\(Y=(y_{ij})\)是一个 \(M\times N\) 矩阵,具有 iid mean 0 variance \(N^{-1}\)条目。我们将 \(M=M(N)\) 和 \(M/N\rightarrow c_infty \in \mathbb {R}{setminus } \{1/}\)视为 \(N\rightarrow \infty \)。众所周知,对于 Wigner 矩阵的极值特征值和 \(\mathcal {S}(Y)\) 的最大特征值,弱第 4 矩条件是 Tracy-Widom 定律的必要且充分条件(Ding 和 Yang 在 Ann Appl Probab 28(3):1679-1738, 2018. https://doi.org/10.1214/17-AAP1341;Lee 和 Yin 在 Duke Math J 163(1):117-173, 2014. https://doi.org/10.1215/00127094-2414767)。在本文中,我们通过发现由\(y_{ij}\)的尾部肥度诱导的相变,证明了对于\(\mathcal {S}(Y)\) 的最小特征值,Tracy-Widom定律更加稳健。更具体地说,我们假设当 \(x\rightarrow \infty \),对于某个 \(\alpha \in (2,4)\) 时,\(y_{ij}\)是对称分布的,其尾部概率为 \(\mathbb {P}(|\sqrt{N}y_{ij}|\ge x)\sim x^{-\alpha }\) 。我们展示了以下结论:(1) 当\(alpha >\frac{8}{3}\) 时,最小特征值在尺度\(N^{-\frac{2}{3}}\)上遵循Tracy-Widom定律; (2) 当\(2<\alpha <\frac{8}{3}\) 时,最小特征值在尺度\(N^{-\frac{alpha }{4}}\)上遵循高斯定律;(3) 当 \(α =\frac{8}{3}\) 时,分布由 Tracy-Widom 和高斯之间的插值给出;(4) 在 \(\alpha \le \frac{10}{3}\) 的情况下,除了 MP 规律的左边缘之外,在 Tracy-Widom 规律和高斯规律中,都应从最小特征值中减去一个确定的移位秩 \(N^{1-\frac\{alpha }{2}}\) 。总的来说,我们的证明策略受到了阿加瓦尔等人(J Eur Math Soc 23(11):3707-3800, 2021. https://doi.org/10.4171/jems/1089)的启发,他们最初是针对莱维维格纳矩阵的体态进行证明的。除了从体到边的扩展所产生的各种技术复杂性之外,我们的推导还需要两个要素:基于简单而有效的矩阵小论证的中间左边缘局部定律,以及线性谱统计量的介观 CLT 及其期望的渐近展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信