Differential forms on universal K3 surfaces

IF 0.6 3区 数学 Q3 MATHEMATICS
SHOUHEI MA
{"title":"Differential forms on universal K3 surfaces","authors":"SHOUHEI MA","doi":"10.1017/s0305004124000100","DOIUrl":null,"url":null,"abstract":"We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed <jats:italic>K</jats:italic>3 surfaces. We prove that there is no nonzero holomorphic <jats:italic>k</jats:italic>-form for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000100_inline1.png\"/> <jats:tex-math> $0&lt;k&lt;10$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and for even <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000100_inline2.png\"/> <jats:tex-math> $k&gt;19$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the remaining cases, we give an isomorphism between the space of holomorphic <jats:italic>k</jats:italic>-forms with that of vector-valued modular forms (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000100_inline3.png\"/> <jats:tex-math> $10\\leq k \\leq 18$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) or scalar-valued cusp forms (odd <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000100_inline4.png\"/> <jats:tex-math> $k\\geq 19$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) for the modular group. These results are in fact proved in the generality of lattice-polarisation.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"7 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed K3 surfaces. We prove that there is no nonzero holomorphic k-form for $0<k<10$ and for even $k>19$ . In the remaining cases, we give an isomorphism between the space of holomorphic k-forms with that of vector-valued modular forms ( $10\leq k \leq 18$ ) or scalar-valued cusp forms (odd $k\geq 19$ ) for the modular group. These results are in fact proved in the generality of lattice-polarisation.
通用 K3 表面上的微分形式
我们给出了尖 K3 曲面模空间光滑投影模型上的全形微分形式的消失和分类结果。我们证明,在 $0<k<10$ 和偶数 $k>19$ 时,不存在非零的全形 k 形式。在其余情况下,我们给出了全形 k 形式空间与模数群的矢量值模数形式($10\leq k \leq 18$)或标量值尖顶形式(奇$k\geq 19$)空间之间的同构关系。这些结果实际上是在格极化的一般性中证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信