Mohamed M. I. Afifi, Ashraf A. El-Shehawy, Fatma A. A. Ali
{"title":"Optimization of the biofuel production by idealized fermentation of the animal manure, chicken wastes, and sewage sludge","authors":"Mohamed M. I. Afifi, Ashraf A. El-Shehawy, Fatma A. A. Ali","doi":"10.2478/pjct-2024-0018","DOIUrl":null,"url":null,"abstract":"This study aims to optimize an economic procedure to produce biogas and bio-ethanol from different organic wastes such as sewage sludge (SS) and/or cattle dung (CD) and/or poultry manure (PM). The experiment was carried out at a wastewater treatment plant in Egypt. Each waste type was mixed with the starter, CaCO<jats:sub>3</jats:sub>, and water then loaded in a fermenter and kept for 35 days at 35 °C under the anaerobic digestion. The evolved volume of the biogas and the content of methane CH4 were measured daily while the cellulase and protease enzymes were tested every four days. Results have indicated that the digester containing the SS has produced the greatest biogas volume (L) 27.45 L<jats:sub>b</jats:sub>/D/d (liters biogas/digester/day), 0.61 L<jats:sub>b</jats:sub>/D contents’ volume/d, and cumulative 606.30 L<jats:sub>b</jats:sub>/D during the 16<jats:sup>th</jats:sup> day. Significant CH<jats:sub>4</jats:sub> volume percentages produced during the 17<jats:sup>th</jats:sup> day were 72.07, 71.16, and 71.11% while the produced bio-ethanol alcohol was 2.47, 2.32, and 1.99% from the SS, CD, and PM, respectively. The procedure efficiency is prominent by the production of the biogases and <jats:italic>in-situ</jats:italic> activating enzymes all in one reactor that was periodically monitored for its reactants and product content. No need for the pre-treatment of wastes as raw materials or chemical additives and the fermented residue can be further tested for soil fertilization. These wastes can be promising for bio-energy production being economic and environment friendly.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"30 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2024-0018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to optimize an economic procedure to produce biogas and bio-ethanol from different organic wastes such as sewage sludge (SS) and/or cattle dung (CD) and/or poultry manure (PM). The experiment was carried out at a wastewater treatment plant in Egypt. Each waste type was mixed with the starter, CaCO3, and water then loaded in a fermenter and kept for 35 days at 35 °C under the anaerobic digestion. The evolved volume of the biogas and the content of methane CH4 were measured daily while the cellulase and protease enzymes were tested every four days. Results have indicated that the digester containing the SS has produced the greatest biogas volume (L) 27.45 Lb/D/d (liters biogas/digester/day), 0.61 Lb/D contents’ volume/d, and cumulative 606.30 Lb/D during the 16th day. Significant CH4 volume percentages produced during the 17th day were 72.07, 71.16, and 71.11% while the produced bio-ethanol alcohol was 2.47, 2.32, and 1.99% from the SS, CD, and PM, respectively. The procedure efficiency is prominent by the production of the biogases and in-situ activating enzymes all in one reactor that was periodically monitored for its reactants and product content. No need for the pre-treatment of wastes as raw materials or chemical additives and the fermented residue can be further tested for soil fertilization. These wastes can be promising for bio-energy production being economic and environment friendly.
期刊介绍:
Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.