Construction of all even lengths type-II Z-complementary pair with a large zero-correlation zone

Piyush Priyanshu, Subhabrata Paul, Sudhan Majhi
{"title":"Construction of all even lengths type-II Z-complementary pair with a large zero-correlation zone","authors":"Piyush Priyanshu, Subhabrata Paul, Sudhan Majhi","doi":"10.1007/s12095-024-00727-w","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a direct construction of type-II Z-complementary pair (ZCP) of <i>q</i>-ary (<i>q</i> is even) for all even lengths with a wide zero-correlation zone (ZCZ). The proposed construction provides type-II <span>\\(\\left( N_1\\times 2^m, N_1\\times 2^m-\\left( N_1-1\\right) /2\\right) \\)</span>-ZCP, where <span>\\(N_1\\)</span> is an odd positive integer greater than 1, and <span>\\(m\\ge 1\\)</span>. For <span>\\(N_1=3\\)</span>, the result produces Z-optimal type-II ZCP of length <span>\\(3\\times 2^m\\)</span>. In this paper, we also present a construction of type-II <span>\\(\\left( N_2\\times 2^m, N_2\\times 2^m-\\left( N_2-2\\right) /2\\right) \\)</span>-ZCP, where <span>\\(N_2\\)</span> is an even positive integer greater than 1, and <span>\\(m\\ge 1\\)</span>. For <span>\\(N_2=2\\)</span> and <span>\\(N_2=4\\)</span>, the result provides a Golay complementary pair (GCP) of length <span>\\(2^{m+1}\\)</span> and Z-optimal type-II ZCP of length <span>\\(2^{m+2}\\)</span>. Both the proposed constructions are compared with the existing state-of-the-art, and it has been observed that it produces a large ZCZ, which covers all existing work in terms of lengths.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00727-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a direct construction of type-II Z-complementary pair (ZCP) of q-ary (q is even) for all even lengths with a wide zero-correlation zone (ZCZ). The proposed construction provides type-II \(\left( N_1\times 2^m, N_1\times 2^m-\left( N_1-1\right) /2\right) \)-ZCP, where \(N_1\) is an odd positive integer greater than 1, and \(m\ge 1\). For \(N_1=3\), the result produces Z-optimal type-II ZCP of length \(3\times 2^m\). In this paper, we also present a construction of type-II \(\left( N_2\times 2^m, N_2\times 2^m-\left( N_2-2\right) /2\right) \)-ZCP, where \(N_2\) is an even positive integer greater than 1, and \(m\ge 1\). For \(N_2=2\) and \(N_2=4\), the result provides a Golay complementary pair (GCP) of length \(2^{m+1}\) and Z-optimal type-II ZCP of length \(2^{m+2}\). Both the proposed constructions are compared with the existing state-of-the-art, and it has been observed that it produces a large ZCZ, which covers all existing work in terms of lengths.

Abstract Image

构建具有大零相关区的所有偶数长度 II 型 Z 互补对
本文提出了一种对于所有偶数长度、具有宽零相关区(ZCZ)的 q-ary (q 为偶数)的第二类 Z 补充对(ZCP)的直接构造。所提出的构造提供了type-II \(\left( N_1\times 2^m, N_1\times 2^m-\left( N_1-1\right) /2\right) \)-ZCP,其中\(N_1\)是大于1的奇正整数,并且\(m\ge 1\).对于(N_1=3),结果产生了长度为(3乘以2^m)的Z-最优类型-II ZCP。在本文中,我们还提出了一个二型ZCP的构造,其中\(N_2\times 2^m, N_2\times 2^m-\left( N_2-2\right) /2\right) \)-ZCP,其中\(N_2\)是一个大于1的偶数正整数,并且\(m\ge 1\).对于 \(N_2=2\) 和 \(N_2=4\) ,结果提供了长度为 \(2^{m+1}\) 的戈莱互补对(GCP)和长度为 \(2^{m+2}\) 的 Z-optimal Type-II ZCP。我们将提出的这两种构造与现有的最先进的构造进行了比较,发现它产生了一个大的 ZCZ,在长度上覆盖了所有现有的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信