Xinren Min, Yang Liu, Shengjing Zhou, Huihua Huang, Li Zhang, Xiaojun Gong, Dongshan Yang, Menghao Wang, Rui Yang, Mingyang Zhong
{"title":"Global adaptive histogram feature network for automatic segmentation of infection regions in CT images","authors":"Xinren Min, Yang Liu, Shengjing Zhou, Huihua Huang, Li Zhang, Xiaojun Gong, Dongshan Yang, Menghao Wang, Rui Yang, Mingyang Zhong","doi":"10.1007/s00530-024-01392-y","DOIUrl":null,"url":null,"abstract":"<p>Accurate and timely diagnosis of COVID-like virus is of paramount importance for lifesaving. In this work, deep learning techniques are applied to lung CT image segmentation for accurate disease diagnosis. We discuss the limitations of current diagnostic methods, such as RT-PCR, and highlights the advantages of deep learning, including its ability to automatically learn features and handle complex lesion morphology and texture. We, therefore, propose a novel deep learning framework, GAHFNet, specifically designed for automatic segmentation of COVID-19 lung CT images. The proposed method addresses the challenges in lung CT image segmentation, such as the complex image structure and difficulties of distinguishing COVID-19 pneumonia lesions from other pathologies. We provide the detailed description of the proposed GAHFNet. Finally, comprehensive experiments are carried out to evaluate the performance of GAHFNet, and the proposed method outperforms other traditional and the state-of-the-art methods in various evaluation metrics, demonstrating the effectiveness and the efficiency of the proposed method in this task. GAHFNet is able to facilitate the application of artificial intelligence in COVID-19 diagnosis and achieve accurate automatic segmentation of infected areas in COVID-19 lung CT images.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"46 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01392-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and timely diagnosis of COVID-like virus is of paramount importance for lifesaving. In this work, deep learning techniques are applied to lung CT image segmentation for accurate disease diagnosis. We discuss the limitations of current diagnostic methods, such as RT-PCR, and highlights the advantages of deep learning, including its ability to automatically learn features and handle complex lesion morphology and texture. We, therefore, propose a novel deep learning framework, GAHFNet, specifically designed for automatic segmentation of COVID-19 lung CT images. The proposed method addresses the challenges in lung CT image segmentation, such as the complex image structure and difficulties of distinguishing COVID-19 pneumonia lesions from other pathologies. We provide the detailed description of the proposed GAHFNet. Finally, comprehensive experiments are carried out to evaluate the performance of GAHFNet, and the proposed method outperforms other traditional and the state-of-the-art methods in various evaluation metrics, demonstrating the effectiveness and the efficiency of the proposed method in this task. GAHFNet is able to facilitate the application of artificial intelligence in COVID-19 diagnosis and achieve accurate automatic segmentation of infected areas in COVID-19 lung CT images.
期刊介绍:
This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.