On Maslov-type index for general paths of symplectic matrices

Hai-Long Her, Qiyu Zhong
{"title":"On Maslov-type index for general paths of symplectic matrices","authors":"Hai-Long Her, Qiyu Zhong","doi":"arxiv-2407.08433","DOIUrl":null,"url":null,"abstract":"In this article, we define an index of Maslov type for general symplectic\npaths which have two arbitrary end points. This Maslov-type index is a\ngeneralization of the Conley-Zehnder-Long index and the method of constructing\nthe index is consistent no matter whether the starting point of the path is\nidentity or not, which is different from the ones for Long's Maslov-type index\nand Liu's $L_0$-index. Some natural properties for the index still hold. We\nreview other versions of Maslov indices and compare them with our definition.\nIn particular, this Maslov-type index can be looked as a realization of\nCappell-Lee-Miller's index for a pair of Lagrangian paths from the point of\nview of index for symplectic paths.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we define an index of Maslov type for general symplectic paths which have two arbitrary end points. This Maslov-type index is a generalization of the Conley-Zehnder-Long index and the method of constructing the index is consistent no matter whether the starting point of the path is identity or not, which is different from the ones for Long's Maslov-type index and Liu's $L_0$-index. Some natural properties for the index still hold. We review other versions of Maslov indices and compare them with our definition. In particular, this Maslov-type index can be looked as a realization of Cappell-Lee-Miller's index for a pair of Lagrangian paths from the point of view of index for symplectic paths.
论交映矩阵一般路径的马斯洛夫型指数
在本文中,我们为有两个任意端点的一般交点路径定义了一种马斯洛夫型指数。这个马斯洛夫型指数是康利-泽恩德-龙指数的广义化,无论路径的起点是否相同,指数的构造方法都是一致的,这与龙的马斯洛夫型指数和刘的 $L_0$ 指数的构造方法不同。该指数的一些自然属性仍然成立。特别是,从交映路径索引的角度看,这个马斯洛夫型索引可以看作是卡佩尔-李-米勒的一对拉格朗日路径索引的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信