Running safety assessment method of trains under seismic conditions based on the derailment risk domain

IF 4.4 1区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY
Zhihui Zhu, Gaoyang Zhou, Weiqi Zheng, Wei Gong, Yongjiu Tang
{"title":"Running safety assessment method of trains under seismic conditions based on the derailment risk domain","authors":"Zhihui Zhu, Gaoyang Zhou, Weiqi Zheng, Wei Gong, Yongjiu Tang","doi":"10.1007/s40534-024-00335-7","DOIUrl":null,"url":null,"abstract":"<p>The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines. Currently, assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin, making them unsuitable for assessing train safety during earthquakes. Therefore, in order to propose an effective evaluation method for the running safety of trains during earthquakes, this study employs three indexes, namely lateral displacement of the wheel–rail contact point, wheel unloading rate, and wheel lift, to describe the lateral and vertical contact states between the wheel and rail. The corresponding evolution characteristics of the wheel–rail contact states are determined, and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation. The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed, thereby constructing the evolutionary path of train derailment and seismic derailment risk domain. Lastly, the wheel–rail contact and derailment states under seismic conditions are analyzed, thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study. The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions. It successfully determines the forms of train derailment, the risk levels of derailment, and the evolutionary paths of derailment risk.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"93 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-024-00335-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines. Currently, assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin, making them unsuitable for assessing train safety during earthquakes. Therefore, in order to propose an effective evaluation method for the running safety of trains during earthquakes, this study employs three indexes, namely lateral displacement of the wheel–rail contact point, wheel unloading rate, and wheel lift, to describe the lateral and vertical contact states between the wheel and rail. The corresponding evolution characteristics of the wheel–rail contact states are determined, and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation. The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed, thereby constructing the evolutionary path of train derailment and seismic derailment risk domain. Lastly, the wheel–rail contact and derailment states under seismic conditions are analyzed, thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study. The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions. It successfully determines the forms of train derailment, the risk levels of derailment, and the evolutionary paths of derailment risk.

Abstract Image

基于脱轨风险域的地震条件下列车运行安全评估方法
准确评估地震时的列车运行安全对确保铁路线路安全具有重要意义。目前,基于单一指标的评估方法存在误判运行安全、难以评估运行裕度等问题,不适合地震时列车运行安全的评估。因此,为了提出地震时列车运行安全的有效评估方法,本研究采用轮轨接触点横向位移、车轮卸载率和车轮升力三个指标来描述车轮与钢轨的横向和纵向接触状态。通过对正弦激励下的列车-轨道耦合系统进行动态数值模拟,确定了轮轨接触状态的相应演变特征,并识别了不同地震运动频率成分下的脱轨形式。分析了从安全状态向脱轨临界状态过渡期间轮轨接触状态的变化,从而构建了列车脱轨和地震脱轨风险域的演化路径。最后,分析了地震条件下的轮轨接触和脱轨状态,从而验证了本研究提出的地震条件下运行安全评估方法的有效性。结果表明,基于脱轨风险域的评估方法准确、全面地反映了地震条件下的轮轨接触状态。它成功地确定了列车脱轨的形式、脱轨的风险等级以及脱轨风险的演化路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Railway Engineering Science
Railway Engineering Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
10.80
自引率
7.90%
发文量
1061
审稿时长
15 weeks
期刊介绍: Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信