A Wasserstein-Type Distance for Gaussian Mixtures on Vector Bundles with Applications to Shape Analysis

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael Wilson, Tom Needham, Chiwoo Park, Suparteek Kundu, Anuj Srivastava
{"title":"A Wasserstein-Type Distance for Gaussian Mixtures on Vector Bundles with Applications to Shape Analysis","authors":"Michael Wilson, Tom Needham, Chiwoo Park, Suparteek Kundu, Anuj Srivastava","doi":"10.1137/23m1620363","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1433-1466, September 2024. <br/> Abstract.This paper uses sample data to study the problem of comparing populations on finite-dimensional parallelizable Riemannian manifolds and more general trivial vector bundles. Utilizing triviality, our framework represents populations as mixtures of Gaussians on vector bundles and estimates the population parameters using a mode-based clustering algorithm. We derive a Wasserstein-type metric between Gaussian mixtures, adapted to the manifold geometry, in order to compare estimated distributions. Our contributions include an identifiability result for Gaussian mixtures on manifold domains and a convenient characterization of optimal couplings of Gaussian mixtures under the derived metric. We demonstrate these tools on some example domains, including the preshape space of planar closed curves, with applications to the shape space of triangles and populations of nanoparticles. In the nanoparticle application, we consider a sequence of populations of particle shapes arising from a manufacturing process and utilize the Wasserstein-type distance to perform change-point detection.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1620363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1433-1466, September 2024.
Abstract.This paper uses sample data to study the problem of comparing populations on finite-dimensional parallelizable Riemannian manifolds and more general trivial vector bundles. Utilizing triviality, our framework represents populations as mixtures of Gaussians on vector bundles and estimates the population parameters using a mode-based clustering algorithm. We derive a Wasserstein-type metric between Gaussian mixtures, adapted to the manifold geometry, in order to compare estimated distributions. Our contributions include an identifiability result for Gaussian mixtures on manifold domains and a convenient characterization of optimal couplings of Gaussian mixtures under the derived metric. We demonstrate these tools on some example domains, including the preshape space of planar closed curves, with applications to the shape space of triangles and populations of nanoparticles. In the nanoparticle application, we consider a sequence of populations of particle shapes arising from a manufacturing process and utilize the Wasserstein-type distance to perform change-point detection.
矢量束上高斯混合物的瓦瑟斯坦型距离及其在形状分析中的应用
SIAM 影像科学期刊》,第 17 卷第 3 期,第 1433-1466 页,2024 年 9 月。 摘要.本文利用样本数据研究了比较有限维可并行黎曼流形和更一般的琐碎向量束上的种群问题。利用三维性,我们的框架将种群表示为向量束上的高斯混合物,并使用基于模式的聚类算法估计种群参数。我们根据流形几何推导出高斯混合物之间的瓦瑟斯坦型度量,以比较估计的分布。我们的贡献包括流形域上高斯混合物的可识别性结果,以及衍生度量下高斯混合物最佳耦合的便捷表征。我们在一些示例域上演示了这些工具,包括平面封闭曲线的预形状空间,以及三角形形状空间和纳米粒子群的应用。在纳米粒子应用中,我们考虑了制造过程中产生的粒子形状群序列,并利用瓦瑟斯坦型距离进行了变化点检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信