Resonant hexagons in fullerene graphs

IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Jun Fujisawa
{"title":"Resonant hexagons in fullerene graphs","authors":"Jun Fujisawa","doi":"10.1007/s10910-024-01650-4","DOIUrl":null,"url":null,"abstract":"<div><p>A fullerene graph is a 3-connected plane cubic graph in which every face is pentagonal or hexagonal. A set of hexagons <span>\\(\\mathcal {H}\\)</span> of <i>G</i> is called a <i>resonant pattern</i> if there exists a perfect matching <i>M</i> of <i>G</i> such that exactly three edges of <i>H</i> is contained in <i>M</i> for each member <i>H</i> of <span>\\(\\mathcal {H}\\)</span>. In this paper we prove for any natural number <i>k</i> that almost all of the family of <i>k</i> disjoint hexagons are resonant patterns in sufficiently large fullerene graphs.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 9","pages":"2280 - 2288"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01650-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A fullerene graph is a 3-connected plane cubic graph in which every face is pentagonal or hexagonal. A set of hexagons \(\mathcal {H}\) of G is called a resonant pattern if there exists a perfect matching M of G such that exactly three edges of H is contained in M for each member H of \(\mathcal {H}\). In this paper we prove for any natural number k that almost all of the family of k disjoint hexagons are resonant patterns in sufficiently large fullerene graphs.

Abstract Image

Abstract Image

富勒烯图形中的共振六边形
富勒烯图是一个三连平面立方图,其中每个面都是五边形或六边形。如果 G 中存在完美匹配的 M,使得 H 的每一个成员 H 都有三条边包含在 M 中,那么 G 的六边形集合 \(\mathcal {H}\) 就被称为共振图案。在本文中,我们证明了对于任意自然数 k,在足够大的富勒烯图中,几乎所有 k 个不相交的六边形族都是共振图案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Chemistry
Journal of Mathematical Chemistry 化学-化学综合
CiteScore
3.70
自引率
17.60%
发文量
105
审稿时长
6 months
期刊介绍: The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches. Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信