{"title":"Graphs with Large Girth and Chromatic Number are Hard for Nullstellensatz","authors":"Julian Romero, Levent Tunçel","doi":"10.1137/23m1553273","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2108-2131, September 2024. <br/> Abstract. We study the computational efficiency of approaches, based on Hilbert’s Nullstellensatz, which use systems of linear equations for detecting noncolorability of graphs having large girth and chromatic number. We show that for every non-[math]-colorable graph with [math] vertices and girth [math], the algorithm is required to solve systems of size at least [math] in order to detect its non-[math]-colorability.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"27 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1553273","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2108-2131, September 2024. Abstract. We study the computational efficiency of approaches, based on Hilbert’s Nullstellensatz, which use systems of linear equations for detecting noncolorability of graphs having large girth and chromatic number. We show that for every non-[math]-colorable graph with [math] vertices and girth [math], the algorithm is required to solve systems of size at least [math] in order to detect its non-[math]-colorability.
期刊介绍:
SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution.
Topics include but are not limited to:
properties of and extremal problems for discrete structures
combinatorial optimization, including approximation algorithms
algebraic and enumerative combinatorics
coding and information theory
additive, analytic combinatorics and number theory
combinatorial matrix theory and spectral graph theory
design and analysis of algorithms for discrete structures
discrete problems in computational complexity
discrete and computational geometry
discrete methods in computational biology, and bioinformatics
probabilistic methods and randomized algorithms.