Investigation of structural, dielectric and electrical properties of lead-free bismuth-based layered multifunctional material: CaBiGdNbVO9 for device fabrication
N. Kumar, S. S. Hota, D. Panda, S. K. Samal, R. N. P. Choudhary, U. Prasad
{"title":"Investigation of structural, dielectric and electrical properties of lead-free bismuth-based layered multifunctional material: CaBiGdNbVO9 for device fabrication","authors":"N. Kumar, S. S. Hota, D. Panda, S. K. Samal, R. N. P. Choudhary, U. Prasad","doi":"10.1007/s40042-024-01140-5","DOIUrl":null,"url":null,"abstract":"<div><p>The current study endeavors to fabricate a lead-free bismuth-based layered multifunctional material denoted as CaBiGdNbVO<sub>9</sub> (CBGNVO), achieved through synthesis and characterization. X-ray diffraction analysis indicates a polycrystalline nature for the developed system, exhibiting orthorhombic crystal symmetry. Structural parameters obtained are <i>a</i> = 14.5781 Å, <i>b</i> = 27.3108 Å, <i>c</i> = 3.7148 Å, and <i>V</i> = 1479.01 Å<sup>3</sup>. Electron microscopic examination reveals compactness and uniform distribution of grains of similar sizes across the pellet sample surface. Electrical data analysis, encompassing relative permittivity, loss tangent, and impedance as functions of temperature and frequency, elucidates dielectric relaxation and conduction mechanisms within the material. These findings suggest the potential suitability for various applications, such as temperature sensors and bandwidth regulation. Examination of electronic charge carriers reveals a short-range order, validated through complex modulus and impedance spectrum analysis. A comprehensive investigation into resistive, capacitive, and microstructural characteristics provides valuable insights, positioning the material as a viable electronic component for device fabrication.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 6","pages":"510 - 519"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01140-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study endeavors to fabricate a lead-free bismuth-based layered multifunctional material denoted as CaBiGdNbVO9 (CBGNVO), achieved through synthesis and characterization. X-ray diffraction analysis indicates a polycrystalline nature for the developed system, exhibiting orthorhombic crystal symmetry. Structural parameters obtained are a = 14.5781 Å, b = 27.3108 Å, c = 3.7148 Å, and V = 1479.01 Å3. Electron microscopic examination reveals compactness and uniform distribution of grains of similar sizes across the pellet sample surface. Electrical data analysis, encompassing relative permittivity, loss tangent, and impedance as functions of temperature and frequency, elucidates dielectric relaxation and conduction mechanisms within the material. These findings suggest the potential suitability for various applications, such as temperature sensors and bandwidth regulation. Examination of electronic charge carriers reveals a short-range order, validated through complex modulus and impedance spectrum analysis. A comprehensive investigation into resistive, capacitive, and microstructural characteristics provides valuable insights, positioning the material as a viable electronic component for device fabrication.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.