Harmonic weak Maass forms and periods II

IF 1.3 2区 数学 Q1 MATHEMATICS
Claudia Alfes, Jan Hendrik Bruinier, Markus Schwagenscheidt
{"title":"Harmonic weak Maass forms and periods II","authors":"Claudia Alfes, Jan Hendrik Bruinier, Markus Schwagenscheidt","doi":"10.1007/s00208-024-02927-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper we investigate the Fourier coefficients of harmonic Maass forms of negative half-integral weight. We relate the algebraicity of these coefficients to the algebraicity of the coefficients of certain canonical meromorphic modular forms of positive even weight with poles at Heegner divisors. Moreover, we give an explicit formula for the coefficients of harmonic Maass forms in terms of periods of certain meromorphic modular forms with algebraic coefficients.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"32 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02927-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate the Fourier coefficients of harmonic Maass forms of negative half-integral weight. We relate the algebraicity of these coefficients to the algebraicity of the coefficients of certain canonical meromorphic modular forms of positive even weight with poles at Heegner divisors. Moreover, we give an explicit formula for the coefficients of harmonic Maass forms in terms of periods of certain meromorphic modular forms with algebraic coefficients.

和声弱马斯形式和周期 II
在本文中,我们研究了负半积分权重的谐波马斯形式的傅里叶系数。我们将这些系数的代数性与极点位于 Heegner divisors 的某些正偶数权的典范并模形式系数的代数性联系起来。此外,我们还给出了谐波马斯形式系数的明确公式,即某些具有代数系数的同调模形式的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信