{"title":"Process window and mechanical properties for thin magnesium- and zinc-wires in dieless wire drawing","authors":"Merle Braatz, Jan Bohlen, Noomane Ben Khalifa","doi":"10.1007/s12289-024-01848-6","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their biodegradable properties, magnesium- and zinc-based alloys are in the focus of interest for numerous medical applications, e.g. in the form of thin wires. To achieve improved processability by using hot forming and to obtain higher diameter reductions per pass, the dieless wire drawing process is presented in this paper. In order to investigate the processability and the resulting mechanical properties, a selection of magnesium- and zinc-alloys as well as process parameters are chosen, and wire manufacturing is carried out using the dieless drawing process. The resulting process windows and mechanical properties for the selected materials are discussed. It is found that the length of the forming zone is an important indicator for the process window and the cross-sectional area reduction accuracy in the dieless wire drawing process. Furthermore, process parameter variations result in a distinct variation of the mechanical properties of the wires, whereas process temperatures close to the wire extrusion temperature result in mechanical properties similar to the as-extruded wires. Good localization of the deformation is found for forming zones of 25–75 mm length at elevated temperatures and cross-sectional area reductions of up to 30% are possible for Z1 and ZX10 in one drawing step.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-024-01848-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01848-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their biodegradable properties, magnesium- and zinc-based alloys are in the focus of interest for numerous medical applications, e.g. in the form of thin wires. To achieve improved processability by using hot forming and to obtain higher diameter reductions per pass, the dieless wire drawing process is presented in this paper. In order to investigate the processability and the resulting mechanical properties, a selection of magnesium- and zinc-alloys as well as process parameters are chosen, and wire manufacturing is carried out using the dieless drawing process. The resulting process windows and mechanical properties for the selected materials are discussed. It is found that the length of the forming zone is an important indicator for the process window and the cross-sectional area reduction accuracy in the dieless wire drawing process. Furthermore, process parameter variations result in a distinct variation of the mechanical properties of the wires, whereas process temperatures close to the wire extrusion temperature result in mechanical properties similar to the as-extruded wires. Good localization of the deformation is found for forming zones of 25–75 mm length at elevated temperatures and cross-sectional area reductions of up to 30% are possible for Z1 and ZX10 in one drawing step.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.