Junmeng Lyu, Yuxin Yang, Yongxiang Shi, Zhiwei Lian
{"title":"Application-driven development of a thermal imaging-based cabin occupant thermal sensation assessment model and its validation","authors":"Junmeng Lyu, Yuxin Yang, Yongxiang Shi, Zhiwei Lian","doi":"10.1007/s12273-024-1147-0","DOIUrl":null,"url":null,"abstract":"<p>The air conditioning (A/C) of cabins allows for customized control, but manual adjustments may distract drivers, as well as result in energy inefficiency. Several existing thermal sensation models require complex inputs, which are challenging to gather whilst driving. To address this issue, this study developed a non-contact thermal sensation model for cabin occupants based on thermal imaging sensor. To collect actual data used for modeling, an outdoor subject experiment was conducted. In this study, initial training was conducted to compare the performance of six algorithms in building the model, with random forests algorithm showing the best performance. Besides, this study employed the recursive feature elimination (RFE) method with cross-validation algorithm for identifying the key features. In the end, the model was retrained using the selected features. The model that incorporated both environmental parameters and facial-temperature features demonstrated the best performance, with an <i>R</i><sup>2</sup> of 0.659 on the test set. Eliminating the hard-to-measure windshield surface temperature resulted in a slight reduction in accuracy, yielding an <i>R</i><sup>2</sup> of 0.651. To verify the generalizability of the model, this study further conducted independent validation experiments. The selected model, which exhibited a mean absolute error (MAE) of less than 0.4 in thermal sensation units, was proven to be highly applicable. The results can offer new solutions for automatic control of cabin A/C.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"12 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-024-1147-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The air conditioning (A/C) of cabins allows for customized control, but manual adjustments may distract drivers, as well as result in energy inefficiency. Several existing thermal sensation models require complex inputs, which are challenging to gather whilst driving. To address this issue, this study developed a non-contact thermal sensation model for cabin occupants based on thermal imaging sensor. To collect actual data used for modeling, an outdoor subject experiment was conducted. In this study, initial training was conducted to compare the performance of six algorithms in building the model, with random forests algorithm showing the best performance. Besides, this study employed the recursive feature elimination (RFE) method with cross-validation algorithm for identifying the key features. In the end, the model was retrained using the selected features. The model that incorporated both environmental parameters and facial-temperature features demonstrated the best performance, with an R2 of 0.659 on the test set. Eliminating the hard-to-measure windshield surface temperature resulted in a slight reduction in accuracy, yielding an R2 of 0.651. To verify the generalizability of the model, this study further conducted independent validation experiments. The selected model, which exhibited a mean absolute error (MAE) of less than 0.4 in thermal sensation units, was proven to be highly applicable. The results can offer new solutions for automatic control of cabin A/C.
期刊介绍:
Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.